Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/17854
Наслов: Comparison of Classification Techniques Applied to Magnetic Resonance Images
Authors: Trojachanec, Katarina 
Kitanovski, Ivan 
Loshkovska, Suzana 
Issue Date: 2010
Conference: CIIT 2010
Abstract: MRI classification is a very important field of research due to the area of its implementation. The aim of this article is to compare support vector machines (SVM), k-nearest neighbors and C4.5 classifiers when they are applied to MRIs. The dataset used for classification contains magnetic resonance images classified in nine classes. All images of the dataset are described with seven descriptors. The analysis of the classifiers was made for each descriptor separately. According to experimental results we conclude that support vector machines are the most precise and appropriate for the MRI dataset used in this research
URI: http://hdl.handle.net/20.500.12188/17854
Appears in Collections:Faculty of Computer Science and Engineering: Conference papers

Files in This Item:
File Опис SizeFormat 
The_7_th_International_Conference_for_In.pdf58.48 kBAdobe PDFView/Open
Прикажи целосна запис

Page view(s)

67
checked on 3.5.2025

Download(s)

14
checked on 3.5.2025

Google ScholarTM

Проверете


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.