Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/17854
DC FieldValueLanguage
dc.contributor.authorTrojachanec, Katarinaen_US
dc.contributor.authorKitanovski, Ivanen_US
dc.contributor.authorLoshkovska, Suzanaen_US
dc.date.accessioned2022-06-01T11:13:22Z-
dc.date.available2022-06-01T11:13:22Z-
dc.date.issued2010-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/17854-
dc.description.abstractMRI classification is a very important field of research due to the area of its implementation. The aim of this article is to compare support vector machines (SVM), k-nearest neighbors and C4.5 classifiers when they are applied to MRIs. The dataset used for classification contains magnetic resonance images classified in nine classes. All images of the dataset are described with seven descriptors. The analysis of the classifiers was made for each descriptor separately. According to experimental results we conclude that support vector machines are the most precise and appropriate for the MRI dataset used in this researchen_US
dc.titleComparison of Classification Techniques Applied to Magnetic Resonance Imagesen_US
dc.typeProceeding articleen_US
dc.relation.conferenceCIIT 2010en_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.author.deptFaculty of Computer Science and Engineering-
crisitem.author.deptFaculty of Computer Science and Engineering-
crisitem.author.deptFaculty of Computer Science and Engineering-
Appears in Collections:Faculty of Computer Science and Engineering: Conference papers
Files in This Item:
File Опис SizeFormat 
The_7_th_International_Conference_for_In.pdf58.48 kBAdobe PDFView/Open
Прикажи едноставен запис

Page view(s)

67
checked on 3.5.2025

Download(s)

14
checked on 3.5.2025

Google ScholarTM

Проверете


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.