Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/34662
Наслов: Modelling and prediction of air pollution using hybrid tree–LASSO approach
Authors: Srbinovska, Mare 
Dimovski, Pavel
Krstevska, Maja Celeska
Mateska, Aleksandra Krkoleva
Andova, Vesna 
Pechkova, Sijche
Pechkov, Aleksandar
Keywords: Air pollution, pollutants, particulate matter, NO2, CO, lasso regression, prediction
Issue Date: 17-сеп-2025
Publisher: SAGE Publications
Journal: Mineral Processing and Extractive Metallurgy: Transactions of the Institutions of Mining and Metallurgy
Abstract: This study employs hybrid tree–Least Absolute Shrinkage and Selection Operator approach to forecast pollutant concentrations (PM2.5, PM10, NO2, and CO) in Skopje, using data from 2018 to 2022, which includes meteorological variables and pollution measurements from three sensor nodes. Models were trained on pre-COVID-19 data and then tested on post- COVID-19 observations to assess the pandemic’s impact on air quality. Results show that models consistently overpredicted pollution levels during the pandemic, suggesting a positive effect of COVID-19 restrictions on air quality. Applications and research directions of the models in the context of metallurgy, mining, and mineral processing are discussed.
URI: http://hdl.handle.net/20.500.12188/34662
DOI: 10.1177/25726641251376762
Appears in Collections:Faculty of Electrical Engineering and Information Technologies: Journal Articles

Files in This Item:
File SizeFormat 
ModelingAndPredictionAirPollutionUsingHybridLASSOApproach.pdf3.36 MBAdobe PDFView/Open
Прикажи целосна запис

Google ScholarTM

Проверете

Altmetric


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.