Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/32233
Наслов: Loop Unrolling Impact on CUDA Matrix Multiplication Operations
Authors: Stefkovski, Vojdan
Mileski, Dimitar
Gusev, Marjan
Keywords: Processor scheduling , Graphics processing units , Computer architecture , Performance gain , Distance measurement , Telecommunications , Registers , Computational efficiency , Kernel , Optimization
Issue Date: 26-ное-2024
Publisher: IEEE
Conference: 2024 32nd Telecommunications Forum (TELFOR)
Abstract: This paper investigates the impact of loop unrolling on CUDA matrix multiplication operations’ performance across NVIDIA GPUs. We benchmarked both basic and unrolled kernels with varying unroll factors (2, 4, 8, and 16) and CUDA block sizes (8, 16, and 32) on matrices ranging from 128 × 128 to 4096 × 4096. Using two GPUs, the GeForce RTX 4060 and GTX TITAN X, we analyze how unrolling factors impact execution time. Our findings indicate that loop unrolling, particularly with factors of 8 and 16 and a block size of 32, yields significant performance gains on larger matrices. These results confirm loop unrolling as an effective optimization technique for CUDA matrix operations, providing insights for developers to enhance computational efficiency across different GPU architectures.
URI: http://hdl.handle.net/20.500.12188/32233
DOI: 10.1109/telfor63250.2024.10819077
Appears in Collections:Faculty of Computer Science and Engineering: Conference papers

Прикажи целосна запис

Page view(s)

66
checked on 3.5.2025

Download(s)

7
checked on 3.5.2025

Google ScholarTM

Проверете

Altmetric


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.