
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective

works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This is accepted version. Published version DOI: 10.1109/TELFOR63250.2024.10819077

Loop Unrolling Impact on CUDA Matrix
Multiplication Operations

Vojdan Stefkovski, Dimitar Mileski, Marjan Gusev
Faculty of Computer Science and Engineering

Skopje, Republic of North Macedonia
vojdan.stefkovski@students.finki.ukim.mk, {dimitar.mileski, marjan.gushev}@finki.ukim.mk

Abstract—This paper investigates the impact of loop unrolling
on CUDA matrix multiplication operations’ performance across
NVIDIA GPUs. We benchmarked both basic and unrolled kernels
with varying unroll factors (2, 4, 8, and 16) and CUDA block
sizes (8, 16, and 32) on matrices ranging from 128 × 128 to
4096 × 4096. Using two GPUs, the GeForce RTX 4060 and GTX
TITAN X, we analyze how unrolling factors impact execution
time. Our findings indicate that loop unrolling, particularly with
factors of 8 and 16 and a block size of 32, yields significant
performance gains on larger matrices. These results confirm
loop unrolling as an effective optimization technique for CUDA
matrix operations, providing insights for developers to enhance
computational efficiency across different GPU architectures.

Index Terms—CUDA, GPGPU, Matrix Multiplication, Parallel
Computing

I. INTRODUCTION

Matrix operations are essential in scientific computing,
engineering simulations, and machine learning (ML). Loop un-
rolling optimizes performance by executing multiple iterations
per step, reducing overhead and enhancing parallelism. CUDA,
NVIDIA’s platform for parallel computing on GPUs leverages
GPU parallelism for general-purpose computing, where loop
unrolling improves matrix operations by decreasing control
instructions and optimizing memory access, resulting in faster
computation and better resource efficiency. These optimiza-
tions are vital for ML and AI applications that rely heavily
on matrix operations, especially in real-time and large-scale
deployments.

However, current GPU compilers perform limited automatic
loop unrolling, highlighting the need for research into manual
unrolling strategies and optimal unroll factors.

This paper examines the impact of loop unrolling on CUDA
matrix multiplication, aiming to identify optimal unroll factors
and their effect on execution time. By testing various matrix
sizes and GPU architectures, the study seeks to demonstrate
performance gains from loop unrolling, enhancing GPU pro-
gramming practices and informing compiler optimizations for
applications dependent on matrix multiplication in large-scale
or real-time environments.

II. RELATED WORK

Recent advancements in General-Purpose Graphics Pro-
cessing Units (GPGPUs) through programming models like
CUDA and OpenCL have demonstrated significant perfor-
mance improvements via architectural and compiler opti-
mizations. Leveraging GPU parallelism, research has shown

that loop unrolling—a classical optimization technique—can
enhance GPGPU performance by up to 70%, with semi-
automatic compile-time methods aiding the determination of
optimal unroll factors [1]–[3].

Memory optimization is also pivotal for maximizing GPU
performance. Siegel et al. [4] explored memory layout strate-
gies within NVIDIA’s CUDA, achieving up to 87× speedup
over CPU implementations in applications like the Gravit
gravity simulator. Effective memory management in GPU
architectures requires innovative data handling and algorithm
design to fully exploit their computational capabilities.

Furthermore, Michailidis and Margaritis [5] developed op-
timized CUDA algorithms for kernel density estimation using
shared memory tiles and loop unrolling, resulting in significant
performance gains over traditional CPU approaches. These im-
provements highlight CUDA’s versatility in addressing diverse
computational problems, emphasizing the importance of both
algorithmic and compiler optimizations.

The evolution of CUDA toolkits has also been examined,
with Yoshida et al. [6] finding that newer versions generally
enhance performance and energy efficiency. However, certain
applications may benefit from older versions due to specific
factors like loop unrolling efficiency and instruction schedul-
ing.

Additionally, the adoption of high-level programming lan-
guages for GPUs has necessitated advanced compilation tech-
niques tailored to GPU parallelism, essential for maximizing
GPU potential beyond traditional graphics tasks [7].

This research underscores the importance of hardware-
aware and algorithm-aware optimizations in GPGPU comput-
ing, pushing the limits of current technologies and paving the
way for future innovations in parallel computing.

III. METHODS

The proposed system architecture (Fig. 1) aims to provide
comprehensive insights into the benefits of loop unrolling in
GPU computing by systematically developing, measuring, and
analyzing different kernel implementations.

A. Solution Architecture

The proposed solution for evaluating the impact of loop un-
rolling on CUDA matrix multiplication operations involves a
multi-phase approach (Fig. 1) designed to assess and optimize
performance systematically. The system architecture consists

https://doi.org/10.1109/TELFOR63250.2024.10819077

of key components: Data Preparation, Kernel Development,
Performance Measurement, and Analysis. Each phase plays a
crucial role in the overall workflow.

CUDA Kernel
Developement

Unrolled
Kernel

Basic Kernel

Performance
Measurement

Data
preparation Analysis

Fig. 1: Solution Architecture for Evaluating Loop Unrolling
in CUDA Matrix Multiplication Operations

1) Data Preparation: The first step involves creating ma-
trices of various sizes for performance testing to assess the
impact of loop unrolling across different data scales. This
includes generating random matrices to simulate workloads,
initializing them on the CPU, and transferring them to GPU
memory using CUDA’s (cudaMalloc and cudaMemcpy)
memory management functions.

2) Kernel Development: In this phase, we developed
CUDA kernels for matrix multiplication with and without
loop unrolling, intentionally avoiding shared memory or tiling
techniques to isolate the performance impact of loop unrolling.

a) Basic Kernel: The basic kernel is a straightforward
implementation of matrix multiplication. Each thread com-
putes a single element of the output matrix C. The kernel
performs the following steps:

1) Compute Thread Indices: Each thread calculates its
corresponding row and column indices in the output
matrix.

int row = blockIdx.y * blockDim.y + threadIdx.y;
int col = blockIdx.x * blockDim.x + threadIdx.x;

2) Initialize Accumulator: A local variable sum is initial-
ized to accumulate the results of the dot product.

float sum = 0;

3) Boundary Check: The kernel includes checks to ensure
that threads do not access memory beyond the matrix
dimensions.

if (row < width && col < width) {
// Computation

}

4) Compute Dot Product: A loop iterates over the shared
dimension (width of the matrices), performing element-
wise multiplication and accumulating the results.

for (int k = 0; k < width; k++) {
sum += A[row * width + k] * B[k * width + col];

}

5) Write Result: The final accumulated value is written to
the output matrix C.

C[row * width + col] = sum;

b) Unrolled Kernels: We implemented unrolled versions
of the kernel with unroll factors of 2, 4, 8, and 16. The unrolled
kernels modify the computation loop to reduce loop overhead
and increase instruction-level parallelism.

• Loop Unrolling Mechanism: The loop increment
matches the unroll factor (e.g., k += 4 for an unroll
factor of 4), allowing multiple multiply-add operations
per iteration.

• Conditional Checks: Conditional statements prevent out-
of-bounds access when the matrix size isn’t divisible by
the unroll factor.

• Example: For the unroll factor of 4, the kernel performs
up to four multiply-add operations per loop iteration.

for (int k = 0; k < width; k += 4) {
sum += A[row * width + k] * B[k * width + col];
if (k + 1 < width)
sum += A[row * width + k + 1] * B[(k + 1) *

width + col];
if (k + 2 < width)
sum += A[row * width + k + 2] * B[(k + 2) *

width + col];
if (k + 3 < width)
sum += A[row * width + k + 3] * B[(k + 3) *

width + col];
}

3) Performance Measurement: We used CUDA events
(cudaEvent_t) to measure each kernel’s execution time by
capturing start and stop timestamps around kernel launches.
This method provides precise GPU timing without requiring
external profiling tools.

4) Analysis: The final phase involves analyzing the col-
lected performance data by comparing the execution times and
metrics of basic and unrolled kernels to assess loop unrolling’s
effectiveness. Statistical methods and visualizations (e.g., bar
charts and line graphs) highlight performance differences,
aiming to quantify the impact of loop unrolling and identify
the conditions where it provides the most benefit.

B. Evaluation Methodology

Speedup measures the performance improvement of an
optimized algorithm over a baseline. It is defined as:

Speedup =
TBasic Kernel

TUnrolled Kernel
(1)

A speedup greater than 1 indicates the unrolled kernel is
faster, while a value near 1 suggests minimal or no improve-
ment.

C. Experiments

The primary focus of our experiments is to evaluate the
performance of matrix-to-matrix multiplication using CUDA,
with and without loop unrolling. Each matrix element is
initialized with randomly generated floating-point values of
type float. Matrix sizes range from 128 × 128 to 4096 ×
4096 to assess performance across varying workloads. The
kernels tested include a basic version and four optimized
versions with unrolling factors of 2, 4, 8, and 16.

1) Experimental Setup: The experiments were conducted
on two NVIDIA GPUs: the GeForce RTX 4060 and GTX
TITAN X. Each GPU was configured to run the same kernels
across different block sizes (8, 16, and 32) to explore the
impact of block size on performance. The CUDA Toolkit
version 12.4 was used, and the code was compiled with the
nvcc compiler. The CUDA events (cudaEvent_t) API
was used to measure the execution time of each kernel with
high precision, capturing the start and end times of GPU
computations.

The code used for this study, including the
full set of experiments, is available on GitHub at
https://github.com/vstefkovski/cuda-matrix-benchmark.

2) Procedure: For each matrix size, both the basic and
unrolled kernels were executed. The unrolled kernels leverage
loop unrolling factors of 2, 4, 8, and 16 to minimize loop
control overhead and enhance parallelism. CUDA’s memory
management functions (cudaMalloc and cudaMemcpy)
were used to allocate and transfer matrices between host and
device memory.

Each kernel was launched with grid and block configura-
tions tailored to the matrix size and block size. Specifically,
the grid dimensions were calculated as:

Grid Size =

(
N + Block Size − 1

Block Size

)
where N is the matrix size. This ensures that all matrix

elements are processed while handling edge cases when the
matrix size is not divisible by the block size.

The program checks for CUDA errors after each kernel
launch and prints performance results for successfully exe-
cuted kernels. This ensures that any misconfiguration or error
is immediately identified, and the experiment continues with
other configurations. Each kernel’s execution time is recorded
using CUDA events to ensure reliable measurement.

3) Performance Metrics: Performance is measured in terms
of execution time (in milliseconds) for each kernel and con-
figuration. The comparison focuses on the speedup achieved
by the unrolled kernels over the basic kernel, calculated as:

Speedup =
TBasic Kernel

TUnrolled Kernel

where TBasic Kernel and TUnrolled Kernel denote the execution
times of the basic and unrolled kernels, respectively. A
speedup greater than 1 indicates a performance improvement
from loop unrolling.

IV. RESULTS

The x-axis in all graphs represents the matrix size, and
the y-axis represents either execution time in milliseconds or
the Speedup level. Each line in the legend denotes a specific
configuration: either the basic kernel or an unrolled kernel, run
on one of the two GPUs, with a specific unrolling factor.

Fig. 2 and Fig. 3 present the execution time for experiments
running on the GeForce RTX 4060 GPU and GTX TITAN X

0 500 1000 1500 2000 2500 3000 3500 4000
Matrix Size

0

200

400

600

800

1000

1200

1400

Ti
m

e
(m

s)

Execution Time Comparison for GeForce RTX 4060
Unroll Factor / Method

Unroll Factor
1
2
4
8
16
Method
Basic
Unrolled

Fig. 2: Execution Time Comparison on GeForce RTX 4060

0 500 1000 1500 2000 2500 3000 3500 4000
Matrix Size

0

100

200

300

400

500

Ti
m

e
(m

s)

Execution Time Comparison for GTX TITAN X
Unroll Factor / Method

Unroll Factor
1
2
4
8
16
Method
Basic
Unrolled

Fig. 3: Execution Time Comparison between Basic and Un-
rolled Kernels for Different Matrix Sizes on GTX TITAN X

GPU. We observe that as the matrix size increases, the execu-
tion time for the unrolled kernels decreases compared to the
basic kernel, particularly for unroll factors 8 and 16 (Figure 2).
For smaller matrix sizes, the execution times between the basic
and unrolled kernels are close. Still, as the matrix size grows,
loop unrolling shows significant benefits, with the unroll factor
16 achieving the most substantial reduction in execution time.

The trends for GTX TITAN X GPU (Figure 3) are similar
to those observed on the RTX 4060, where the execution time
decreases significantly with larger matrix sizes applying the
unrolling. Again, the unroll factors of 8 and 16 offer the most
notable reductions in execution time.

V. DISCUSSION

A. Speedup

Fig. 4 and Fig. 5 illustrate the Speedup of the unrolled
kernels over the basic kernel on the RTX 4060 and GTX
TITAN X GPU. The highest speedups are for smaller matrix
sizes (128 and 256), with a rapid decrease in Speedup as
matrix sizes increase. However, unroll factors 8 and 16 for
larger matrices provide consistent performance gains, showing
a speedup of approximately 1.5x to 2x over the basic kernel
for matrix sizes 4096.

https://github.com/vstefkovski/cuda-matrix-benchmark

0 500 1000 1500 2000 2500 3000 3500 4000
Matrix Size

1.0

1.5

2.0

2.5

3.0

3.5
Sp

ee
du

p
Speedup Comparison for GeForce RTX 4060

Unroll Factor
2
4
8
16

Fig. 4: Speedup Achieved by Unrolled Kernels Compared to
the Basic Kernel on GeForce RTX 4060

0 500 1000 1500 2000 2500 3000 3500 4000
Matrix Size

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Sp
ee

du
p

Speedup Comparison for GTX TITAN X
Unroll Factor

2
4
8
16

Fig. 5: Speedup Achieved by Unrolled Kernels Compared to
the Basic Kernel on GTX TITAN X

The Speedup achieved on the TITAN X (Figure 5) follows
a pattern similar to that of the RTX 4060. The most significant
speedups occur for small matrix sizes, with factors 8 and
16, and up to 3.5x for larger matrices (2048 and 4096). The
performance improvements plateau for larger matrices, with
unroll factors 8 and 16 maintaining an advantage over the
basic kernel.

These results confirm that loop unrolling can significantly
improve the performance of CUDA matrix multiplication,
particularly for larger matrices. The unrolling factors of 8 and
16 consistently provide the best balance between execution
time reduction and overall efficiency across the RTX 4060
and GTX TITAN X GPUs.

B. Comparison to Other Research

Our findings align with previous research showing that loop
unrolling significantly enhances GPGPU performance. Murthy
et al. [1] demonstrated that optimal unroll factors can greatly
improve performance. Similarly, we found that higher unroll
factors reduce execution time but may increase register usage,
affecting GPU occupancy.

While Murthy et al. examined various GPGPU applications
using a semi-automatic framework, our study focused specifi-

cally on matrix multiplication on modern GPUs, achieving up
to a 3× speedup with unroll factors of 8 and 16. This highlights
the importance of selecting appropriate unroll factors based on
the specific application and hardware architecture.

Overall, our results confirm loop unrolling as a critical
optimization technique in CUDA programming, while empha-
sizing the need to balance unrolling with resource constraints
to maximize performance across different GPU architectures
and problem sizes.

VI. CONCLUSION

This study investigated the impact of loop unrolling on the
performance of CUDA matrix multiplication kernels across
various GPUs and configurations. Results show that loop
unrolling significantly enhances GPU matrix operations by
reducing execution time and achieving substantial speedups
compared to basic implementations.

Applying optimal unroll factors of 8 and 16 with appropriate
block sizes led to notable performance gains on NVIDIA
GeForce RTX 4060 and GTX TITAN X GPUs, especially for
larger matrices. The optimal configuration varies with GPU
architecture and problem size, emphasizing the importance of
selecting suitable unroll factors and block sizes to maximize
performance by minimizing loop overhead and improving
instruction-level parallelism.

Future work could further boost performance by combining
loop unrolling with other optimizations like shared memory
utilization, register tiling, and instruction scheduling. Addi-
tionally, exploring the effects of loop unrolling on different
matrix operations and newer GPU architectures would provide
deeper insights into GPU optimization strategies.

REFERENCES

[1] G. S. Murthy, M. Ravishankar, M. M. Baskaran, and P. Sadayappan,
“Optimal loop unrolling for gpgpu programs,” in 2010 IEEE International
Symposium on Parallel & Distributed Processing (IPDPS). IEEE, 2010,
pp. 1–11.

[2] G. S. Murthy, “Optimal loop unrolling for gpgpu programs,” Ph.D.
dissertation, Ohio State University, 2009.

[3] G. Sreenivasa Murthy, “Optimal loop unrolling for gpgpu programs,”
Master’s thesis, The Ohio State University, 2009.

[4] J. Siegel, J. Ributzka, and X. Li, “Cuda memory optimizations for
large data-structures in the gravit simulator,” Journal of Algorithms &
Computational Technology, vol. 5, no. 2, pp. 341–362, 2011.

[5] P. D. Michailidis and K. G. Margaritis, “Accelerating kernel density
estimation on the gpu using the cuda framework,” Applied Mathematical
Sciences, vol. 7, no. 30, pp. 1447–1476, 2013.

[6] K. Yoshida, S. Miwa, H. Yamaki, and H. Honda, “Analyzing the impact
of cuda versions on gpu applications,” Parallel Computing, vol. 120, p.
103081, 2024.

[7] G. Chakrabarti, V. Grover, B. Aarts, X. Kong, M. Kudlur, Y. Lin,
J. Marathe, M. Murphy, and J.-Z. Wang, “Cuda: Compiling and optimiz-
ing for a gpu platform,” Procedia Computer Science, vol. 9, pp. 1910–
1919, 2012.

	Introduction
	Related Work
	Methods
	Solution Architecture
	Data Preparation
	Kernel Development
	Performance Measurement
	Analysis

	Evaluation Methodology
	Experiments
	Experimental Setup
	Procedure
	Performance Metrics

	Results
	Discussion
	Speedup
	Comparison to Other Research

	Conclusion
	References

