Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/33202
Наслов: Abelian and Tauberian results for the fractional Fourier cosine (sine) transform
Authors: Maksimović, Snježana
Atanasova, Sanja 
Mitrović, Zoran D.
Haque, Salma
Mlaiki, Nabil
Issue Date: 2024
Publisher: American Institute of Mathematical Sciences (AIMS)
Journal: AIMS Mathematics
Abstract: <jats:p xml:lang="fr"><abstract><p>In this paper, we presented Tauberian type results that intricately link the quasi-asymptotic behavior of both even and odd distributions to the corresponding asymptotic properties of their fractional Fourier cosine and sine transforms. We also obtained a structural theorem of Abelian type for the quasi-asymptotic boundedness of even (resp. odd) distributions with respect to their fractional Fourier cosine transform (FrFCT) (resp. fractional Fourier sine transform (FrFST)). In both cases, we quantified the scaling asymptotic properties of distributions by asymptotic comparisons with Karamata regularly varying functions.</p></abstract></jats:p>
URI: http://hdl.handle.net/20.500.12188/33202
DOI: 10.3934/math.2024597
Appears in Collections:Faculty of Electrical Engineering and Information Technologies: Journal Articles

Прикажи целосна запис

Page view(s)

35
checked on 3.5.2025

Download(s)

2
checked on 3.5.2025

Google ScholarTM

Проверете

Altmetric


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.