Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис:
http://hdl.handle.net/20.500.12188/33202
Наслов: | Abelian and Tauberian results for the fractional Fourier cosine (sine) transform | Authors: | Maksimović, Snježana Atanasova, Sanja Mitrović, Zoran D. Haque, Salma Mlaiki, Nabil |
Issue Date: | 2024 | Publisher: | American Institute of Mathematical Sciences (AIMS) | Journal: | AIMS Mathematics | Abstract: | <jats:p xml:lang="fr"><abstract><p>In this paper, we presented Tauberian type results that intricately link the quasi-asymptotic behavior of both even and odd distributions to the corresponding asymptotic properties of their fractional Fourier cosine and sine transforms. We also obtained a structural theorem of Abelian type for the quasi-asymptotic boundedness of even (resp. odd) distributions with respect to their fractional Fourier cosine transform (FrFCT) (resp. fractional Fourier sine transform (FrFST)). In both cases, we quantified the scaling asymptotic properties of distributions by asymptotic comparisons with Karamata regularly varying functions.</p></abstract></jats:p> | URI: | http://hdl.handle.net/20.500.12188/33202 | DOI: | 10.3934/math.2024597 |
Appears in Collections: | Faculty of Electrical Engineering and Information Technologies: Journal Articles |
Files in This Item:
File | Size | Format | |
---|---|---|---|
1. Abelian and Tauberian results for the fractional Fourier cosine (sine) transform.pdf | 272.33 kB | Adobe PDF | View/Open |
Page view(s)
35
checked on 3.5.2025
Download(s)
2
checked on 3.5.2025
Google ScholarTM
Проверете
Altmetric
Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.