Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/33202
DC FieldValueLanguage
dc.contributor.authorMaksimović, Snježanaen_US
dc.contributor.authorAtanasova, Sanjaen_US
dc.contributor.authorMitrović, Zoran D.en_US
dc.contributor.authorHaque, Salmaen_US
dc.contributor.authorMlaiki, Nabilen_US
dc.date.accessioned2025-04-08T07:32:31Z-
dc.date.available2025-04-08T07:32:31Z-
dc.date.issued2024-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/33202-
dc.description.abstract<jats:p xml:lang="fr"><abstract><p>In this paper, we presented Tauberian type results that intricately link the quasi-asymptotic behavior of both even and odd distributions to the corresponding asymptotic properties of their fractional Fourier cosine and sine transforms. We also obtained a structural theorem of Abelian type for the quasi-asymptotic boundedness of even (resp. odd) distributions with respect to their fractional Fourier cosine transform (FrFCT) (resp. fractional Fourier sine transform (FrFST)). In both cases, we quantified the scaling asymptotic properties of distributions by asymptotic comparisons with Karamata regularly varying functions.</p></abstract></jats:p>en_US
dc.publisherAmerican Institute of Mathematical Sciences (AIMS)en_US
dc.relation.ispartofAIMS Mathematicsen_US
dc.titleAbelian and Tauberian results for the fractional Fourier cosine (sine) transformen_US
dc.identifier.doi10.3934/math.2024597-
dc.identifier.urlhttp://www.aimspress.com/article/doi/10.3934/math.2024597?viewType=html-
dc.identifier.volume9-
dc.identifier.issue5-
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.author.deptFaculty of Electrical Engineering and Information Technologies-
Appears in Collections:Faculty of Electrical Engineering and Information Technologies: Journal Articles
Прикажи едноставен запис

Page view(s)

35
checked on 3.5.2025

Download(s)

2
checked on 3.5.2025

Google ScholarTM

Проверете

Altmetric


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.