Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/30703
Наслов: Certain properties of the class of univalent functions with real coefficients
Authors: Milutin Obradović
Nikola Tuneski
Keywords: Mathematics - Complex Variables
Mathematics - Complex Variables
30C45, 30C50, 30C55
Issue Date: 29-дек-2021
Abstract: Let ${\mathcal U}^+$ be the class of analytic functions $f$ such that $\frac{z}{f(z)}$ has real and positive coefficients and $f^{-1}$ be its inverse. In this paper we give sharp estimates of the initial coefficients and initial logarithmic coefficients for $f$, as well as, sharp estimates of the second and the third Hankel determinant for $f$ and $f^{-1}$. We also show that the Zalcman conjecture holds for functions $f$ from ${\mathcal U}^+$.
URI: http://hdl.handle.net/20.500.12188/30703
Appears in Collections:Faculty of Mechanical Engineering: Journal Articles

Прикажи целосна запис

Page view(s)

39
checked on 3.5.2025

Google ScholarTM

Проверете


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.