Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/30703
DC FieldValueLanguage
dc.contributor.authorMilutin Obradovićen_US
dc.contributor.authorNikola Tuneskien_US
dc.date.accessioned2024-06-19T09:53:18Z-
dc.date.available2024-06-19T09:53:18Z-
dc.date.issued2021-12-29-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/30703-
dc.description.abstractLet ${\mathcal U}^+$ be the class of analytic functions $f$ such that $\frac{z}{f(z)}$ has real and positive coefficients and $f^{-1}$ be its inverse. In this paper we give sharp estimates of the initial coefficients and initial logarithmic coefficients for $f$, as well as, sharp estimates of the second and the third Hankel determinant for $f$ and $f^{-1}$. We also show that the Zalcman conjecture holds for functions $f$ from ${\mathcal U}^+$.en_US
dc.subjectMathematics - Complex Variablesen_US
dc.subjectMathematics - Complex Variablesen_US
dc.subject30C45, 30C50, 30C55en_US
dc.titleCertain properties of the class of univalent functions with real coefficientsen_US
item.fulltextNo Fulltext-
item.grantfulltextnone-
Appears in Collections:Faculty of Mechanical Engineering: Journal Articles
Прикажи едноставен запис

Page view(s)

39
checked on 3.5.2025

Google ScholarTM

Проверете


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.