Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/33952
Наслов: Leveraging Dataframe-Based Operations for Calculation of Heart Rate Variability
Authors: Temelkov, G
Gusev, Marjan
Keywords: HRV , Dataframes , Polars , Vectorization , Parallelisation , Performance Optimization , Computational Efficiency , Computational Technique
Issue Date: 20-мај-2024
Publisher: IEEE
Conference: 2024 47th MIPRO ICT and Electronics Convention (MIPRO)
Abstract: This paper introduces a novel Heart Rate Variability (HRV) calculation strategy, diverging from traditional divide-and-conquer methodologies to dataframes utilizing the Polars library as an advanced data manipulation tool. We demonstrate significant improvements in computational performances, where the dataframe approach outperforms the iterative approach with speedup factors beyond 98 times for short-term HRV calculations and substantial reductions in processing times across various test cases. These enhancements underscore the potential of tailored dataframe manipulations in enhancing performance and adapting to complex data analysis challenges in HRV assessments.
URI: http://hdl.handle.net/20.500.12188/33952
Appears in Collections:Faculty of Computer Science and Engineering: Conference papers

Прикажи целосна запис

Google ScholarTM

Проверете


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.