Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12188/33447
DC FieldValueLanguage
dc.contributor.authorFranzo, Giovannien_US
dc.contributor.authorFusaro, Aliceen_US
dc.contributor.authorSnoeck, Chantal Jen_US
dc.contributor.authorDodovski, Aleksandaren_US
dc.contributor.authorVan Borm, Stevenen_US
dc.contributor.authorSteensels, Miekeen_US
dc.contributor.authorChristodoulou, Vasilikien_US
dc.contributor.authorOnita, Iulianaen_US
dc.contributor.authorBurlacu, Ralucaen_US
dc.contributor.authorSánchez, Azucena Sánchezen_US
dc.contributor.authorChvala, Ilya Aen_US
dc.contributor.authorTorchetti, Mia Kimen_US
dc.contributor.authorShittu, Ismailaen_US
dc.contributor.authorOlabode, Mayowaen_US
dc.contributor.authorPastori, Ambraen_US
dc.contributor.authorSchivo, Alessiaen_US
dc.contributor.authorSalomoni, Angelaen_US
dc.contributor.authorManiero, Silviaen_US
dc.contributor.authorZambon, Ilariaen_US
dc.contributor.authorBonfante, Francescoen_US
dc.contributor.authorMonne, Isabellaen_US
dc.contributor.authorCecchinato, Mattiaen_US
dc.contributor.authorBortolami, Alessioen_US
dc.date.accessioned2025-05-08T13:36:19Z-
dc.date.available2025-05-08T13:36:19Z-
dc.date.issued2025-04-14-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/33447-
dc.description.abstractNewcastle disease virus (NDV) continues to present a significant challenge for vaccination due to its rapid evolution and the emergence of new variants. Although molecular and sequence data are now quickly and inexpensively produced, genetic distance rarely serves as a good proxy for cross-protection, while experimental studies to assess antigenic differences are time consuming and resource intensive. In response to these challenges, this study explores and compares several machine learning (ML) methods to predict the antigenic distance between NDV strains as determined by hemagglutination-inhibition (HI) assays. By analyzing F and HN gene sequences alongside corresponding amino acid features, we developed predictive models aimed at estimating antigenic distances. Among the models evaluated, the random forest (RF) approach outperformed traditional linear models, achieving a predictive accuracy with an R2 value of 0.723 compared to only 0.051 for linear models based on genetic distance alone. This significant improvement demonstrates the usefulness of applying flexible ML approaches as a rapid and reliable tool for vaccine selection, minimizing the need for labor-intensive experimental trials. Moreover, the flexibility of this ML framework holds promise for application to other infectious diseases in both animals and humans, particularly in scenarios where rapid response and ethical constraints limit conventional experimental approaches.en_US
dc.language.isoenen_US
dc.publisherMDPI AGen_US
dc.relation.ispartofVirusesen_US
dc.titleEvaluation of Different Machine Learning Approaches to Predict Antigenic Distance Among Newcastle Disease Virus (NDV) Strainsen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/v17040567-
dc.identifier.urlhttps://www.mdpi.com/1999-4915/17/4/567/pdf-
dc.identifier.volume17-
dc.identifier.issue4-
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.author.deptFaculty of Veterinary Medicine-
Appears in Collections:Faculty of Veterinary Medicine: Journal Articles
Files in This Item:
File SizeFormat 
viruses-17-00567-v3.pdf2.61 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.