
Academic Editor: Grzegorz

Wozniakowski

Received: 19 March 2025

Revised: 3 April 2025

Accepted: 9 April 2025

Published: 14 April 2025

Citation: Franzo, G.; Fusaro, A.;

Snoeck, C.J.; Dodovski, A.; Van Borm,

S.; Steensels, M.; Christodoulou, V.;

Onita, I.; Burlacu, R.; Sánchez, A.S.;

et al. Evaluation of Different Machine

Learning Approaches to Predict

Antigenic Distance Among Newcastle

Disease Virus (NDV) Strains. Viruses

2025, 17, 567. https://doi.org/

10.3390/v17040567

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Evaluation of Different Machine Learning Approaches to
Predict Antigenic Distance Among Newcastle Disease
Virus (NDV) Strains
Giovanni Franzo 1,* , Alice Fusaro 2, Chantal J. Snoeck 3 , Aleksandar Dodovski 4 , Steven Van Borm 5 ,
Mieke Steensels 5 , Vasiliki Christodoulou 6 , Iuliana Onita 7, Raluca Burlacu 7, Azucena Sánchez Sánchez 8,
Ilya A. Chvala 9 , Mia Kim Torchetti 10, Ismaila Shittu 11 , Mayowa Olabode 11 , Ambra Pastori 2,
Alessia Schivo 2, Angela Salomoni 2, Silvia Maniero 2, Ilaria Zambon 2, Francesco Bonfante 2, Isabella Monne 2 ,
Mattia Cecchinato 1 and Alessio Bortolami 2

1 Department of Animal Medicine, Production and Health (MAPS), Padua University, 35020 Legnaro, Italy;
mattia.cecchinato@unipd.it

2 Division of Comparative Biomedical Sciences (DSBIO), Istituto Zooprofilattico Sperimentale delle Venezie,
Viale dell’Università 10, 35020 Legnaro, Italy; afusaro@izsvenezie.it (A.F.); ambrj@hotmail.it (A.P.);
aschivo@izsvenezie.it (A.S.); asalomoni@izsvenezie.it (A.S.); smaniero@izsvenezie.it (S.M.);
izambon@izsvenezie.it (I.Z.); fbonfante@izsvenezie.it (F.B.); imonne@izsvenezie.it (I.M.);
abortolami@izsvenezie.it (A.B.)

3 Clinical and Applied Virology Group, Department of Infection and Immunity, Luxembourg Institute of
Health, 29, Rue Henri Koch, Esch-sur-Alzette, L-4354 Luxembourg, Luxembourg; chantal.snoeck@lih.lu

4 Faculty of Veterinary Medicine–Skopje, Ss. Cyril and Methodius University in Skopje, Lazar Pop Trajkov 5-7,
1000 Skopje, North Macedonia; adodovski@fvm.ukim.edu.mk

5 Avian Virology and Immunology, Sciensano, Rue Groeselenberg 99, 1180 Ukkel, Belgium;
steven.vanborm@sciensano.be (S.V.B.); mieke.steensels@sciensano.be (M.S.)

6 Section Veterinary Services (1417), Laboratory for Animal Health Virology, 79, Athalassa Avenue, Aglantzia,
Nicosia 2109, Cyprus; vchristodoulou@vs.moa.gov.cy

7 Institute For Diagnosis and Animal Health, 63, Dr. Staicovici Str., Sector 5, 050557 Bucharest, Romania;
iuliana.onita@idah.ro (I.O.); raluca.burlacu@idah.ro (R.B.)

8 Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food, Ctra. M-106, Km 1,
4 Algete, 28110 Madrid, Spain; azusan@mapa.es

9 National Reference Laboratory for Avian Influenza and Newcastle Disease, Federal Centre for Animal
Health (FGBI “ARRIAH”), Vladimir 600901, Russia; chvala@arriah.ru

10 National Veterinary Services Laboratories, U.S. Department of Agriculture, Ames, IA 50011, USA;
mia.kim.torchetti@usda.gov

11 National Veterinary Research Institute, Vom 93010, Nigeria; ismaila.shittu@gmail.com (I.S.);
mayowaolabode12@gmail.com (M.O.)

* Correspondence: giovanni.franzo@unipd.it; Tel.: +39-04-9827-2789

Abstract: Newcastle disease virus (NDV) continues to present a significant challenge for
vaccination due to its rapid evolution and the emergence of new variants. Although molecu-
lar and sequence data are now quickly and inexpensively produced, genetic distance rarely
serves as a good proxy for cross-protection, while experimental studies to assess antigenic
differences are time consuming and resource intensive. In response to these challenges,
this study explores and compares several machine learning (ML) methods to predict the
antigenic distance between NDV strains as determined by hemagglutination-inhibition (HI)
assays. By analyzing F and HN gene sequences alongside corresponding amino acid fea-
tures, we developed predictive models aimed at estimating antigenic distances. Among the
models evaluated, the random forest (RF) approach outperformed traditional linear models,
achieving a predictive accuracy with an R2 value of 0.723 compared to only 0.051 for linear
models based on genetic distance alone. This significant improvement demonstrates the
usefulness of applying flexible ML approaches as a rapid and reliable tool for vaccine selec-
tion, minimizing the need for labor-intensive experimental trials. Moreover, the flexibility
of this ML framework holds promise for application to other infectious diseases in both
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animals and humans, particularly in scenarios where rapid response and ethical constraints
limit conventional experimental approaches.

Keywords: NDV; machine learning; sequencing; cross-protection; hemagglutination inhibition;
antigenic cartography

1. Introduction
Vaccine discovery has been described as “One of the brightest chapters in the history of

science”, due to its impact on human and animal health [1,2]. Vaccination has successfully
eradicated smallpox and rinderpest and it has provided effective control for several decades
against several human and animal diseases like measles, pertussis, diphtheria, mumps,
rabies, and foot and mouth disease [3–5]. Nevertheless, emerging or remerging pathogens
and continuous viral evolution represent a challenge for modern vaccinology [6,7]. One of
the major obstacles in vaccine development and disease control is the extreme variability of
some of these pathogens, in particular, RNA viruses [8]. Many viruses are characterized
by limited cross-protection among different strains of the same species and, even if the
development of universal vaccines would probably be the optimal solution [9], this goal is
far from being achieved for most diseases. The current approach is to update or validate
new vaccines to respond to new viruses or genotypes [10]. Unfortunately, this approach
is time consuming and expensive, limiting the prompt application of control strategies or
discouraging it when economic benefits are not significant. Additionally, when several
vaccines are already available for a given disease, the choice of the best one is typically
due to personal opinion rather than facts, mainly as a consequence of high costs or ethical
constraints in performing adequate experimental testing [11–14].

Newcastle disease, one of the most important avian diseases worldwide, is caused
by Orthoavulavirus javaense (https://ictv.global/taxonomy; accessed on 26 March 2024),
historically and commonly known as Newcastle disease virus (NDV), an enveloped,
single-stranded RNA virus member of the genus Orthoavulavirus from the Paramyxoviri-
dae family [15,16].

Similarly to other RNA viruses, NDV features a high evolutionary rate [17]. Currently,
two classes—class I and class II—20 genotypes, and multiple subgenotypes have been
defined based on the Fusion (F) gene sequence analysis [18]. Such genotypic heterogenicity
reflects on relevant biological implications, including virulence. Clinical signs in infected
birds are extremely variable, from subclinical to fatal, depending on host and virus-related
factors. NDV strains are often also classified according to their virulence with lentogenic
NDV strains causing subclinical infections with mild respiratory or enteric disease. Meso-
genic NDV strains have intermediate virulence and cause respiratory infections with a
moderate mortality rate while velogenic (virulent) strains are further divided into two
types: viscerotropic velogenic strains and neurotropic velogenic strains. The former can
cause lesions mainly affecting the intestinal tract such as ulcerative hemorrhages in the
mucosa; lymphoid depletion; and necrotic foci in the spleen, liver, and gut-associated lym-
phoid tissue (GALT). Neurotropic velogenic strains are characterized by lesions affecting
primarily the CNS, which results in dyspnea, depression, opisthotonos, head twisting, and
paralysis [15,19].

Because of clinical and economic relevance, NDV vaccination has a long history, being
first proposed in the early 1930s and used extensively since then, becoming one of the most
applied vaccines in veterinary medicine [20]. Several vaccines, both live and inactivated,
based on avirulent, lentogenic, and mesogenic strains have been developed over time and

https://ictv.global/taxonomy
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more recent advances in molecular biology have further widened the portfolio to recom-
binant vaccines [21,22]. Nevertheless, NDV strains included in commercially available
conventional vaccines, which still represent the most common choice in many countries, be-
long to genotypes I (Ulster, QV4, VG/GA-AVINEW) and II (LaSota, B1, VG/GA), and thus
are phylogenetically divergent from strains circulating in the last two decades in endemic
Middle Eastern and Asian countries, where genotype VII is the most prevalent [23,24].
Newer commercially available recombinant vaccines have been developed by using the
turkey herpesvirus as a vector for the expression of NDV F and or HN proteins through re-
verse genetics and recombination technologies. However, for some of these newer vaccines,
in terms of match towards the field viruses, this did not represent a major advancement
as the genetic material was derived from old vaccine strains (e.g., LaSota clone 30) rather
than from field velogenic viruses [25]. However, HVT-vectored vaccines present many
favorable characteristics such as easy production, favorable characteristics for mass admin-
istration in hatcheries, robust stimulation of cell-mediated immunity, less interference from
maternally derived antibodies, and more [26]. Despite the wide use of these vaccines, NDV
still represents a major menace for the worldwide poultry industry, and the development
of novel NDV vaccines, which can induce better protection with safer characteristics, is
ongoing [21,22]. Protection against clinical disease by commercially available vaccines
has been demonstrated in several experimental trials, while protection from shedding has
been less investigated and on some occasions was found to be poorly related to protection
from disease [27,28]. Moreover, vaccine administration in the field is often suboptimal
and provided according to a plethora of poorly standardized protocols, which further
hinders vaccine-induced protection [21]. The circulation of virulent NDV in vaccinated
poultry has been reported [29,30], highlighting the need for an improved understanding
of the protection offered by current vaccines and the importance of accurate selection of
immunization strategies to reduce the silent circulation of virulent NDV.

Despite NDV being considered a single serotype, several reports and studies have
highlighted the effect of virus genetic variability on antigenic features and thus on cross-
protection. Antibodies raised against the transmembrane hemagglutinin-neuraminidase
(HN) and fusion (F) proteins are regarded as neutralizing, being able to block viral attach-
ment and fusion, respectively [22,31–34]. The immune response is commonly monitored
through a hemagglutination inhibition (HI) test that, although not fully representative
of protection and viral shedding inhibition, is nevertheless of remarkable help to study
cross-protection, particularly when applied in the framework of more modern techniques
like antigenic cartography. Antigenic cartography was initially developed to measure the
antigenic diversity between influenza viruses by comparing the reaction titers among the
test antigens and reference antisera [35]. Its use has now been extended to other important
pathogens to understand antigenic relatedness and to guide vaccine strain selection as anti-
genic cartography can simplify data interpretation through intuitive antigenic maps [35].

Unfortunately, such in vitro studies are laboratory intensive, requiring dedicated struc-
ture, skilled personnel, and availability of standardized and well-characterized viral strains
and sera, which might not be available in several socio-economic contexts. Moreover, such
methods do not have the flexibility and rapid turnaround time necessary to deal with farm-
ing routines and with a heterogeneous and/or rapidly evolving epidemiological scenario.

For this reason, different machine learning approaches have been evaluated in the present
study to predict the antigenic distance among NDV strains based on the comparison of their
genetic sequences. NDV has been chosen as a model for different reasons: (1) It is one
of the most economically relevant diseases of poultry, which has also prompted relevant
research over the years. (2) Like other RNA viruses it is characterized by a remarkable genetic
variability. (3) The major targets of the host immune response, responsible for the viral
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neutralization, are well characterized and commonly sequenced. (4) The HI test for NDV
is commonly applied in several diagnostic and research laboratories for the estimation of
vaccine coverage in vaccinating countries and for surveillance purposes in non-vaccinating
countries. (5) Different vaccines based on major, but not all, genotypes have been developed.
Nevertheless, the choice of the best vaccine according to the field epidemiological scenario is
gaining interest among public authorities and veterinarians [36,37].

The current study aims to provide a new approach to predict antigenic relationships
between different strains based on an inexpensive, rapid, and objective approach, which
could lead to an improved planning of adequate control strategies, not only for NDV but
also for other human and animal diseases.

2. Materials and Methods
2.1. Viruses

Viruses from the repository of the European Reference Laboratory (EURL) for Avian
Influenza and Newcastle Disease were selected to be representative of the current NDV
epidemiological situation and of vaccine seed strains. The selection of strains voluntarily
overrepresented genotypes more frequently associated with outbreaks in domestic poultry
and was limited by the availability of viral strains. All viruses were propagated and
titrated in 9–10-day-old embryonated SPF chicken eggs via the chorioallantoic sac route.
The median embryo infectious dose (EID50) was calculated using the standard method as
previously described [38]. A list of selected viruses is available in Table 1.

Table 1. Summary of the NDV strain included in this study, genetic characteristics, virulence, and
titer of the viral stock produced.

Strain
Genotype
(Dimitrov
2019 [18])

Pathotype 1 HA Titer Titer
(EID50/100 µL)

Vaccine

VG/GA-AVINEW I.1.1 Avirulent 1:256 108.83

V4-like I.1.2 Avirulent 1:128 108.5

NDV I2 I.1.1 Avirulent 1:128 108.83

Ulster I.2 Avirulent 1:512 108.5

B1 II Avirulent 1:512 108.5

LaSota II Avirulent 1:256 108.83

APMV-1/Herts_21VIR2596/33 IV Virulent 1:128 108.625

APMV-
1/chicken/California/18016505-

1_19VIR4338/2018
V Virulent 1:256 108.625

APMV-
1/pigeon/Italy/19VIR8321/2019 VI Virulent 1:64 108

APMV-
1/chicken/Krasnodar/91_21VIR4521/19 VII.1.1 Virulent 1:128 108.5

APMV-
1/chicken/Romania/19VIR9275-

1/2019
VII.1.1 Virulent 1:256 109.625

APMV-1/broiler/Spain/22VIR7253-
24/2022 VII.2 Virulent 1:128 108.625
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Table 1. Cont.

Strain
Genotype
(Dimitrov
2019 [18])

Pathotype 1 HA Titer Titer
(EID50/100 µL)

Field virus

APMV-
1/chicken/Macedonia/20VIR1984-

1/2020
VII.2 Virulent 1:128 108.5

APMV-
1/chicken/Belgium/4096_19RS1-

M/2018
VII.2 Virulent 1:64 108.625

APMV-1/avian/Nigeria/21RS744-
46/2021 XIV.2 Virulent 1:64 108.625

APMV-1/avian/Nigeria/21RS2367-
12/2021 XIV.2 Virulent 1:64 108.625

APMV-1/avian/Nigeria/21RS736-
11/2021 XIV.2 Virulent 1:64 108.375

APMV-1/avian/Nigeria/21RS2368-
1/2021 XIV.2 Virulent 1:32 108.375

APMV-1/avian/Nigeria/21RS2368-
6/2021 XIV.2 Virulent 1:32 108.375

APMV-1/chicken/Cameroon/3490-
168_21VIR2562/2008 XVII Virulent 1:128 108.83

APMV-1/pigeon/Luxembourg/
18175752_18VIR10959/2018 XXI.1.1 Virulent 1:64 108.625

APMV-1/pigeon/Cyprus/20VIR3543-
36_26364-1/2020 XXI.2 Virulent Not

viable Not viable

1: the pathotype was deducted from the F0 cleavage site sequences obtained according to the WOAH terrestrial
manual ([39] 2021, Chapter 3.3.14).

Harvested allantoic fluids were confirmed for NDV by hemagglutination (HA) and
hemagglutination-inhibition (HI) assays using NDV-specific antiserum (Ulster 2C strain) ac-
cording to standardized protocols available at the EURL website (https://www.izsvenezie.
com/reference-laboratories/avian-influenza-newcastle-disease/diagnostic-protocols/, ac-
cessed on 1 March 2025). The virus-containing allantoic fluids were harvested and stored
at −80 ◦C until use.

2.2. Preparation of Hyperimmune Sera in SPF Chickens

To obtain the chicken hyperimmune sera, 3000 HAU of each selected strain (Table 1)
was inactivated with formalin at 37 ◦C at a final concentration of 0.1% for 18 h and inocu-
lated into three 6-week-old SPF chickens through an intravenous route [40]. The chickens
were boosted with the same amount of inactivated virus after three weeks from the first
immunization. The animals were bled on day 21 after the second immunization and the
sera of the three immunized birds were pooled to obtain a representative serum and reduce
the effect of biological variability in immune responses. Sera were subjected to complement
inactivation by heating at 56 ◦C for 30 min, aliquoted in small volumes, and stored at
−20 ◦C until use.

A second immunization experiment was performed immunizing 5 SPF chickens with
either NDV/chicken/rus/Krasnodar/91/19, APMV-1/avian/Nigeria/21RS2368-1/2021,
or LaSota antigens as described above. Following bleeding at 21 days after the second
immunization, individual sera of each immunized bird were collected, subjected to com-

https://www.izsvenezie.com/reference-laboratories/avian-influenza-newcastle-disease/diagnostic-protocols/
https://www.izsvenezie.com/reference-laboratories/avian-influenza-newcastle-disease/diagnostic-protocols/
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plement inactivation by heating at 56 ◦C for 30 min, aliquoted in small volumes, and stored
at −20 ◦C until use.

Immunizations were carried out in accordance with the Italian and EU law on Animal
Welfare (Italian Legislative Decree No. 26 dated 4th March 2014 implementing the Euro-
pean Directive 2010/63/EU) and were approved by IZSVe’ Ethics Committee (Organismo
Preposto al Benessere animale).

2.3. Haemagglutination Inhibition Assay

Haemagglutination inhibition assays were performed according to standard proce-
dures using four HA units of antigen per well (https://www.woah.org/fileadmin/Home/
eng/Health_standards/tahm/A_summry.htm, accessed on 30 December 2024). Back-
titration of each antigen used was performed to confirm that four HA units per well were
present. The test results were accepted if the control sera were within a two-fold dilution
range of their known HI titer. The HI titers were read as the reciprocal of the highest
dilution showing complete inhibition. The HI titers were expressed as the reciprocal of
log2 in this study. Sera with HI titers ≥4 were considered positive according to the WOAH
criteria. All tests were repeated three times by two different technicians.

2.4. Microneutralization Assay

The serum-neutralizing antibody titers were detected with a microneutralization (MN)
assay using chicken embryo fibroblasts (CEF) of SPF 11-day-old chicken embryos prepared
as previously described [41]. CEF cells were seeded in 96-well plates and used for virus
neutralization tests after 24 h at full confluency. Serum samples were then serially diluted
two-fold from 1:10 to 1:1280 in Dulbecco’s Modified Eagle Medium (DMEM) and incubated
with an equal volume of virus at a final concentration of 100 TCID50/100 µL for 1 h at
37 ◦C. One hundred microliters of the virus-serum mixture were then used to infect the
cell monolayers. After 1 h of incubation, 50 µL of DMEM was added and the plate was
incubated at 37 ◦C. The presence of NDV in infected cells was detected by ELISA after
72 h of incubation as previously described, with minor modifications [42]. Briefly, plates
were fixed with a cold fixative solution (80% acetone) for 10 min at room temperature.
After removal of the fixative, the plates were allowed to dry and washed 3 times with PBS.
A primary monoclonal antibody against NDV (Mouse Newcastle Disease Virus (NDV)
Monoclonal Antibody MBS312296, MyBiosource, Inc, San Diego, Southern California,
USA)) was added to each well and incubated for 1 h at room temperature. Plates were
washed three times and a secondary HRP-conjugated antibody (Peroxidase AffiniPure™
Goat Anti-Mouse IgG (H + L), Jackson ImmunoResearch Europe Ltd.) was added to
each well. The plate was then incubated for 1 h at room temperature. After removal
of the secondary antibody and washing, 100 µL of a freshly prepared substrate (10 mg
OPD, Sigma-Aldrich in 20 mL citrate buffer + H2O2) was added to each well. Absorbance
was read at 490 nm (OD490) using a spectrophotometer (Tecan Trading AG, Männedorf,
Switzerland), and the virus neutralization antibody 50% titer of each serum was calculated
using the following equation:

x = ((average OD of Virus Control wells) − (average OD of Cell Control wells))/2

All values below or equal to x have been considered positive for neutralization activity.

2.5. Antigenic Cartography

The antigenic variation among the different NDV strains was quantified and visualized
using the antigenic cartography method [43] with 1000 bootstrap replicates. Briefly, the
target distance between an antiserum A and an antigen B was determined by calculating the

https://www.woah.org/fileadmin/Home/eng/Health_standards/tahm/A_summry.htm
https://www.woah.org/fileadmin/Home/eng/Health_standards/tahm/A_summry.htm
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difference between the maximum logarithm (log2) reciprocal HI or MN titer for antiserum A
against any antigen and the log2 reciprocal neutralizing titer for antiserum A against antigen
B. The distance obtained is expressed as antigenic units (AU) with one AU corresponding
to a 2-fold change in the titer. Using the multidimensional scaling method [44], the position
of each virus and antiserum in the map will be the result of minimizing the difference
between the target distances and map distances. The distance between the points on the
2D map represents the antigenic distances.

2.6. Sequencing and Phylogenetic Analysis

RNA was purified using QIAamp Viral RNA Mini Kit (Qiagen, Hilden; Germany)
following the manufacturer’s instructions. Sequencing libraries were obtained using the
Nextera XT DNA Sample Preparation Kit (Illumina; San Diego, California, USA) starting
from amplification products obtained using SuperScript™ III One-Step RT-PCR System
with Platinum™ Taq High Fidelity DNA Polymerase kit (Thermo Fisher Scientific; Waltham,
Massachusetts, USA) (primer sequences available upon requests) or from double-stranded
cDNA generated using Maxima H Minus Double-Stranded cDNA Synthesis (Thermo Scien-
tific™). Libraries were quantified using the Qubit dsDNA High Sensitivity Kit (Invitrogen,
Waltham, Massachusetts, USA). The indexed libraries were pooled in equimolar concentra-
tions and sequenced on the Illumina MiSeq platform. Reads were clipped from Illumina
Nextera XT adaptors using scythe v0.991 (https://github.com/vsbuffalo/scythe) (accessed
12 December 2022) and trimmed with sickle v1.33 (https://github.com/najoshi/sickle)
(accessed 12 December 2022). Reads shorter than 80 bases or unpaired after previous filters
were discarded. High-quality reads were aligned against a reference genome using BWA
v0.7.12. Alignments were processed with Picard tools v2.1.0 (http://picard.sourceforge.net,
accessed on 1 March 2025) and GATK v3.530-32 to correct potential errors, realign reads
around indels, and recalibrate base quality. Single nucleotide polymorphisms (SNPs) were
called using LoFreq v2.1.233, and the outputs were used to generate consensus sequences.
Consensus sequences of the complete genomes were submitted to GenBank under acces-
sion numbers (PV137993–PV138014). The obtained F sequences were used to evaluate
the relationship among the considered strains and classify them. To this purpose, a refer-
ence dataset of 128 sequences representing all class II NDV genotypes and sub-genotypes
(available at https://github.com/NDVconsortium/NDV_Sequence_Datasets/tree/master)
(accessed 1 March 2023) [18] was downloaded and aligned with the sequences obtained
in the present study. A maximum likelihood phylogenetic tree was reconstructed using
IQ-Tree, selecting as the substitution model the one with the lowest Akaike information
criterion (AIC), calculated using the same software. The reliability of the inferred clades
was assessed by performing 1000 bootstrap replicates.

2.7. Database Preparation

All generated HN sequences were aligned at the codon level using the MAFFT
method [45] implemented in TransaltorX [46]. A database was constructed, reporting
the following for each strain pair: (1) the antigenic distance (dependent variable), (2) the
genetic distance between strains, and (3) a site-by-site comparison between amino acids
features. Amino acids can be grouped according to their physical–chemical features and
those can significantly affect the protein structure as well as its immunogenicity. To include
these features in the model, the metric described by Atchely et al. was used [47]. Briefly,
the main features of each amino acid were described as a combination of 5 continuous
variables (polarity index, secondary structure factor, volume, Refractivity/Heat Capacity,
and Charge/Iso-electric point) obtained through factorial analysis and representative of the
variability described originally by more than 400 chemical–physical properties [47]. The

https://github.com/vsbuffalo/scythe
https://github.com/najoshi/sickle
http://picard.sourceforge.net
https://github.com/NDVconsortium/NDV_Sequence_Datasets/tree/master
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absolute values of the difference between vaccine and challenge strain were then calculated
position by position for all the five factors and included in the database. Positions without
variability were removed from the database. To reduce the curse of dimensionality effect,
variables with a coefficient of correlation higher than 0.7 were removed from the dataset.

Before algorithm development and optimization, 40% of the records were randomly
selected, removed, and stored as the test dataset. The following steps were thus performed
on the remaining data (i.e., training dataset).

The same approach was performed on the obtained F sequences and on the concatena-
tion of both the HN and F sequences dataset (renamed Merged dataset). The ML models
were developed and validated on all the defined datasets.

2.8. Protection Prediction

In most of the literature, linear models using the genetic distance between strains as
a predictive variable have been considered [48] and were thus herein used as a baseline
model. However, many potentially important variables are neglected using this approach.
On the other end, data mining methods, such as machine learning-based approaches, are
capable of providing an effective way of overcoming these limitations by analyzing large
sets of predictive variables and modeling complex, potentially non-linear relationships.

Keeping this in mind, the following approaches were implemented and trained on the
datasets described in Section 2.7: Bagging trees (BT), Random forest (RF), Artificial Neural
Network (ANN), and Support Vector Machines (SVM). The following R [49] libraries were
used for analysis and data visualization: ape [50], seqinr [51], ips [52], ggplot2 [53], lattice [54],
caret [55], randomForest [56], neuralnet [57], kernlab [58], and mboost [58].

2.8.1. Bagging Trees (BT)

Those methods belong to the class of tree-based methods, which involve the stratifi-
cation of predictor space in many simpler regions; the tree-like structure trained in this
process can be then used for prediction purposes. The bagging method uses a bootstrap
approach to deal with the high variance that typically affects regression trees. Briefly, sev-
eral bootstrapped datasets are generated by random sampling with replacement. For each
dataset, a regression tree is trained and the final prediction is obtained through averaging
of the different models [59].

2.8.2. Random Forest (RF)

RF methods use an approach similar to bagging trees; different decision trees are
built on bootstrapped datasets. However, each time a split in the tree is considered, only a
random subset of n predictors is selected as the split candidate. This approach allows the
bootstrapped trees to decorrelate, making the average results less variable and consequently
more accurate. Additionally, using only a random subset of all the features, random forest
can handle big datasets, efficiently dealing with the “course of dimensionality” [60–62].

2.8.3. Artificial Neural Network (ANN)

ANNs are models inspired by our understanding of biological brain behavior. A
typical neural network is defined by one or more layers of neurons, called nodes (i.e., in-
put nodes, hidden nodes, and output nodes), connected among them by “axons” and
“synapses”. Each node integrates the information received from the database or previous
layers through an activation function determining the output of that node, which is trans-
ferred to the following one with a certain weight (w). As in biological systems, synapses
can discharge with a different strength, manipulating the data in the calculations. Weights,
and consequently neural network prediction, are typically trained using a backpropagation
approach, evaluating iteratively the prediction errors and defining the best set of weights
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that reduce the total error of the network. To summarize, an ANN can be defined by the
activation function, the network topology (i.e., number of layers and nodes for each layer)
and the training algorithm.

2.8.4. Supporting Vector Machines (SVM)

SVM is a generalization of the maximal margin classifier that can be used to model
both nominal (classification) and quantitative (regression) problems. A key feature of SVMs
is their ability to map the data into a higher dimensional space using the so-called “kernel
trick”. Non-linear kernel functions can be used to transform the original data (e.g., highly
complex non-linear relationships) to a new high dimensional feature space where the
input data become more separable compared to the original feature space by causing the
non-linear relationship to appear linear in the new feature space. In other words, the kernel
trick involves a step in which new features, expressing mathematical relationships between
measured variables, are added, allowing the SVM to learn concepts that were not evident
in the original dataset.

2.9. Performance Criteria

The performances of each method were evaluated through the coefficient of determi-
nation (R2), mean absolute error (MAE), and root-mean square error (RMSE), calculated
using the difference between the predicted value (Ft) and the actual one (Yt).

The MAE is thus an arithmetic average of the absolute errors.

MAE =

n
∑

t=1
|Yt− Ft|

N

The RMSE corresponds to the sample standard deviation of the differences between
predicted values and observed values:

RMSE =

√
∑n

t=1(Yt− Ft)2

n

Consequently, the smaller the value the better the model performed.
On the contrary, the R2 is an index of how well the model fits the data.

R2 = 1− ∑n
t=1(Ft−Yt)2

∑n
t=1
(
Yt−Y

)2

Unlike the RMSE, the higher the R2 (0 < R2 < 1), the better the performance for the
compared models. The metrics were chosen for their complementary strengths—R2 to
measure variance explained and overall fit, RMSE to penalize large errors, and MAE
to provide a robust average error—thus ensuring a balanced evaluation of the model’s
predictive performance.

2.10. K-Fold Cross-Validation

All tested methods allow different settings to modify their complexity and flexibility.
While increasing the model flexibility improves its fit (i.e., lower bias) to the data and its
predictive performance on the training dataset, this can lead to an excessive specificity for
this dataset, making the prediction useless when applied to an unknown dataset (i.e., higher
variance), a phenomenon called overfitting.
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To minimize the trade-off between bias and variance, each method was optimized
through a repeated cross-validation approach (5-fold cross-validation approach repeated
20 times).

In k-fold cross-validation, the original dataset (D) is randomly split into k mutually
exclusive subsets (the folds: D1, D2, . . ., Dk). The prediction model is then trained and
tested k times. All but one fold are used for training while the remaining is used as a
test dataset. The whole process is then repeated t times. The cross-validation estimate
of the overall performance criteria was consequently calculated as the average of the
k × t individual performance:

CV =
1

k× t

t

∑
j=1

k

∑
i=1

RMSE2
ij

where CV stands for cross-validation, k is the number of folds used, t is the number of
repetitions, and RMSE is the performance measure used in this study.

The settings optimized for each method are reported in Supplementary Table S1.
For each method, the model displaying the best mean RMSE calculated on the test

dataset was selected as the final model.

2.11. Model Comparison

All R2, MAE, and RMSE values sampled for each final model were then used to
evaluate the presence of statistically significant differences among methods in predicting
the protection outcome. A pairwise t-test with Bonferroni correction was used for this
purpose setting the statistical significance to p-value < 0.05.

2.12. Best Model Evaluation on the Test Dataset

The final assessment of the developed model performances was conducted using the
test dataset, which was never included in any step of the validation process and can thus
be considered fully independent (i.e., representative of potential new data generated in
real-life scenarios). The antigenic distance among strain pairs was predicted using the
best model based on the independent variables of the test dataset and compared to the
real values obtained experimentally. The predictive performance of a linear model (LM)
considering genetic distance only was also evaluated for comparison purposes.

3. Results
3.1. Genetic and Antigenic Relatedness by Antigenic Cartography

The phylogenetic analysis and classification demonstrated that the selected strains
belong to 13 genotypes (Supplementary Figure S1). Specifically, the field strains belong
to genotypes IV, V.1, VI.2.1, VII.1.1, VII.2, XIV.2, XVII, XXI.1.1, and XXI.2, which are
representative of most of the virulent genotypes responsible for important recent outbreaks
in Europe and West Africa, while the vaccine strains belong to genotypes I.1.1, I.1.2, I.2,
and II (Table 1).

The average raw nucleotide distance among obtained sequences was 13.2% [interval
= 0–19.3%] and 14.0% [interval = 0–19.1%] at F and HN gene levels, respectively.

Compared to the vaccine strains, the field strains present from 28 to 79 and from 34 to
84 amino acid differences in the F and HN proteins, respectively (Table 2).

Antigenic cartography was used to characterize the antigenic relatedness among
all viruses used in this work using the HI values obtained (Figure 1). A prediction test
was carried out to evaluate the reliability of the cartography and the optimal number of
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dimensions to represent the dataset. The final antigenic map was represented in 2D as no
discernible mean advantage in precision was obtained using higher dimensions.

Table 2. Number of amino acid (AA) differences among the HN (572 amino acid long) and F
(554 amino acid long) proteins of the analyzed viruses.

Virus Genotype AA Differences to
Vaccines HN Gene Level

AA Differences to
Vaccines F Gene Level

APMV-1/Herts_21VIR2596/33 IV 34–47 28–48

APMV-
1/chicken/California/18016505-

1_19VIR4338/2018
V.1 59–70 57–72

APMV-
1/pigeon/Italy/19VIR8321/2019 VI.2.1 60–74 49–62

APMV-
1/chicken/Krasnodar/91_21VIR4521/19 VII.1.1 56–69 60–74

APMV-
1/chicken/Romania/19VIR9275-

1/2019
VII.1.1 61-71 48–63

APMV-1/broiler/Spain/22VIR7253-
24/2022 VII.2 60–72 44–65

APMV-
1/chicken/Macedonia/20VIR1984-

1/2020
VII.2 63–75 44–65

APMV-
1/chicken/Belgium/4096_19RS1-

M/2018
VII.2 60–72 44–64

APMV-1/avian/Nigeria/21RS744-
46/2021 XIV.2 68–81 61–78

APMV-1/avian/Nigeria/21RS2367-
12/2021 XIV.2 72–84 61–78

APMV-1/avian/Nigeria/21RS736-
11/2021 XIV.2 64–75 62–79

APMV-1/avian/Nigeria/21RS2368-
1/2021 XIV.2 66–79 59–76

APMV-1/avian/Nigeria/21RS2368-
6/2021 XIV.2 66–79 62–79

APMV-1/chicken/Cameroon/3490-
168_21VIR2562/2008 XVII 64–74 48–69

APMV-1/pigeon/Luxembourg/
18175752_18VIR10959/2018 XXI.1.1 61–73 53–66

APMV-1/pigeon/Cyprus/20VIR3543-
36_26364-1/2020 XXI.2 54–70 58–77

Samples received before February 2022.

All genotype I and II strains that are used for vaccine formulations appear to be
closely related antigenically (AU distances ranging from 0.097 to 1.271). Genotype I can
be distinguished from genotype II strains by 28 and 20 amino acid substitutions in F and
HN proteins, respectively. Differently, large distances in AU from vaccine strains were
observed for some virulent strains belonging to genotypes VII.1.1 and XIV.2 (e.g., APMV-
1/chicken/rus/Krasnodar/91_21VIR4521/19 and APMV-1/avian/Nigeria/21RS2368-
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1/2021, respectively). APMV-1/chicken/rus/Krasnodar/91_21VIR4521/19 presents 60–74
amino acid differences from the vaccine strains in the F gene and 56–69 differences in the
HN protein, while APMV-1/avian/Nigeria/21RS2368-1/2021 presents 59–76 amino acid
differences from the vaccine strains in the F protein and 66–79 differences in the HN protein
(Table 2). Within genotypes, antigenic diversity was observed inside genotype XIV.2, a
genotype for which multiple isolates were available due to the current endemic situation
in Nigeria. Genotype XIV.2 viruses have 10–30 amino acid differences at the HN gene
level and 3–14 at the F gene level, highlighting a considerable diversity given that they
have been collected during a short time interval and in the same geographical region. In
addition, one isolate (APMV-1/avian/Nigeria/21RS2368-1/2021) is antigenically distinct
(0.926–1.241 AU) from other genotype XIV.2 isolates.
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Figure 1. Antigenic map of NDVs based on HI data. Names of antigens (depicted as dots) and sera
(depicted as squares) were excluded from the map to improve readability. Colors have been assigned
to each genotype (nomenclature according to Dimitrov et al., [18]) to visualize antigenic relatedness
between genotypes. The vertical and horizontal axes both represent antigenic distance, and, because
only the relative positions of antigens and antisera can be determined, the orientation of the map
within these axes is free. The spacing between grid lines is 1 unit of antigenic distance corresponding
to a twofold dilution of antiserum in the HI assay.

PPMV-1 viruses (APMV-1/pigeon/Italy/19VIR8321/2019 and APMV-1/pigeon/ Lux-
embourg/18175752_18VIR10959/2018) grouped together in the antigenic map and despite
not being antigenically far from vaccine strains, they were distinguishable from other
NDV strains.

MN data obtained from a further selection of antigens, based on the antigenic map
created based on HI results, were used to test if antigenic relatedness obtained by HI also
reflected the neutralizing ability of sera. A larger number of replicates has been used to
further strengthen the reliability of results for this smaller selection of viruses. Results are
presented in Figure 2, where a grouping of sera with the homologous antigen is visible.
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Figure 2. Antigenic map of NDVs based on MN data. Dots represent antigens and squares represent
sera of individual immunized birds. The same color has been used for viruses and homologous
antisera; superposition of two sera is represented by darker color of the square. The spacing between
grid lines is 1 unit of antigenic distance corresponding to a two-fold dilution of antiserum in the
MN assay.

3.2. Dataset and Algorithms Development and Validation

After dataset elaboration and pre-processing, a total of 190 strain comparisons were
considered and 68, 89, and 120 independent predictive variables were retained in the final
F, HN, and Merged datasets, respectively.

On the F gene-based dataset, the metrics collected through repeated cross-validation
showed overall better performances of the tree-based methods (TB and RF) compared to
SVM, although the difference was not statistically significant. On the other hand, both tree-
based and SVM approaches significantly outperformed ANN and linear models (Figure 3).
Essentially comparable results were obtained on the HN dataset, although in this case, the
RF model metrics were typically significantly better than the other approaches, including
TB and SVM (Figure 4). An intermediate pattern featured the Merged dataset, with RF
outperforming the other approaches except for TB, against which the improvement was
only marginally significant (Figure 5).

When the three datasets were compared, RF methods developed on the HN and
Merged dataset showed overall better performances, while RF based on the F gene per-
formed comparably to the SVM and TB methods (Supplementary Figure S2). The dif-
ferences were not statistically significant except for the HN-based RF approach, whose
performances were significantly better than most of the other approaches independently
from the considered metric (Supplementary Figure S3). Regardless of the dataset, the ANN
and LM showed significantly worse performances.
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interval, corrected for multiple comparisons, indicative of statistical significance, are reported.

3.3. Final Model Testing on the Test Dataset

Based on the overall observed performance patterns, the HN-based RF method was se-
lected and its predictive performances were assessed using the test dataset. The LM was also
evaluated on the same dataset for comparison purposes. LM metrics were RMSE = 0.934,
MAE = 0.753, and R2 = 0.051, while the RF were RMSE = 0.509, MAE = 0.382, and R2 = 0.723.

4. Discussion
Machine learning (ML) was, from the very beginning, applied to medical datasets [63].

The growing availability of new algorithms, big data, and computational power has led to
its wide use as an aid in physicians’ decision-making processes [63]. ML has been applied
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to disease classification, intervention outcome, and survival prediction, with different
applications in oncology, transplantology, cardiology, and diagnostic imaging, just to
mention a few [64–68]. Infectious diseases and vaccinology have also been involved in this
revolution [69,70].

The relationship between genetic distance and cross-protection is typically recognized
and has a strong biological and evolutive background. Nevertheless, this correlation
has been proven poor, and many exceptions have been reported. This is not unexpected
considering the non-direct relationship between genotype and phenotype and the different
weights of protein regions and domains from an immunological point of view. Substitutions
involving different positions and/or amino acids with diverse chemical–physical properties
can severely affect the cross-protection among strains. In fact, while genetic distances
correlate with the amino acid ones [34], the differences in specific protein sites can be large,
and a simple sequence comparison might not be effective in predicting antigenic similarities.
This evidence explains the different and sometimes unexpected findings observed in
experimental cross-protection studies involving different genotypes and suggests that the
selection of vaccine antigens should still be based on dedicated experimental studies with
live animals [33,71].

However, in vivo challenge studies are expensive, available only in a limited number
of laboratories with dedicated facilities, and are extremely time consuming, making them
poorly suited to the requirements of modern farming systems, dealing with a dynamic and
rapidly changing epidemiological scenario.

NDV was not an exception since different studies have demonstrated a differential
cross-protection induced by homologous versus heterologous challenges after previous
immunization [33,36,72]. The antigenicity of genotypes and strains can be differentiated by
cross-HI assays, which correlate with vaccine protection measured by virus shedding after
challenge, and a certain linear relationship was observed between antibody titer and viral
shedding [34]. The choice of the best vaccine should be based on the knowledge of the viral
features of strains circulating in each country. For example, the value of the calculation of
antigenic distances for vaccine selection is well demonstrated by the process of selection of
vaccines for seasonal human influenza. In the process of selection of vaccine strains, the
antigenic profiles of circulating strains are compared with those of existing vaccine strains
and if the antigenic distance (difference) between a vaccine strain and circulating strains is
significant, it may warrant an update of the vaccine [73].

The ML methods herein developed aim to overcome these limitations by validating
more informed and flexible antigenic distance predictive algorithms. Including site-specific
amino acid features in our model, as well as using methods able to model non-linear
relationships, allowed us to significantly improve antigenic distance prediction compared
to linear models and, at the same time, allow for a much quicker response time.

Different methods behaved differently, emphasizing the need to carefully evaluate
different approaches and validate them to set the best model for each dataset. The random
forest approach granted the best performances, significantly outperforming linear models
and most of the other ML methods. In particular, the RF trained on the HN dataset led
to the lowest estimate error and better R2, although not significantly better than the F
gene-validated approach.

While the good performance obtained using the F dataset might seem surprising, the
HI test being biologically grounded on the neutralization of the HN-mediated attachment
and being affected only to a limited extent by the presence of neutralizing antibodies
directed towards epitopes located on the F protein [74], the prediction capability of F
sequences was largely expected because of the common evolutive history of the two
genomic segments within each virus, making the respective amino acid profiles highly
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correlated. This statement is supported by the lack of any predictive improvement when
the merged HN and F dataset was used, which, on the other hand, outperformed the
F-based dataset alone. Such evidence testifies that the variability depicted by the HN
protein overlaps the F one, and no residual information is provided by this gene.

To understand how the antigenic differences determined by HI were related to the
neutralizing ability of sera against live NDV viruses, a smaller panel of viruses, selected
on the basis of HI results among the ones where the greatest differences were identified,
were tested by MN with five homologous antisera generated specifically for this purpose.
The number of strains selected for cross-neutralization experiments represents a limitation
of the study and MN assays have been used to strengthen and verify the robustness of
antigenic data obtained by HI. It has been demonstrated that simultaneous neutralization
of different epitopes on NDV viruses is required to fully neutralize the infectivity of the
virus, and therefore it has been postulated that serum neutralization assays could be a
better predictor of the protective ability of candidate vaccine strains [36]. In our study,
antigenic distances identified by MN were similar to those obtained by the HI for the three
tested viruses, even accounting for some variability observed between individual replicates
(i.e., biological variability).

In this framework, it must be stressed that the developed algorithms are not intended
to identify any biologically relevant feature of the considered viruses (e.g., neutralizing
antigens, specific domains, glycosylation sites, etc.) but simply to predict an outcome of
interest (i.e., antigenic distance) based on a set of variable (i.e., gene sequences). For the
same reason, any a priori knowledge of NDV biology was voluntarily ignored. This decision
was supported by two main reasons. At first, the variability of the results of experimental
trials, ascribable to experimental procedures, laboratory techniques, animal features, etc.,
while fundamental to gaining an overall qualitative understanding of pathogen biology,
lack the necessary rigor to be included as predictive variables in quantitative mathematical
models without setting subjective and arbitrary inclusion criteria. For the same reason, their
use would hamper the future expansion and update of the algorithm training database,
necessary to continuously improve its performance, since experimental procedures would
be required, followed by subjective data elaboration. The use of sequence data allows
not only a much faster and cheaper data generation but also dramatically reduces future
problems of data standardization among laboratories.

Despite the encouraging results, a strong focus should be maintained on the limitations
of this study, which are primarily related to the reduced availability of experimental
data. The number of strain combinations tested in experimental trials made it difficult to
extensively train the different models and to confidently test their performances. Even if an
extensive cross-validation approach was used, a certain dependency between the model
selection and the training dataset could not be avoided being the final model selected,
optimized, and validated iterating over partitions of the training dataset. However, the
R2 of the linear model estimated using traditional parametric assumption was lower but
comparable (i.e., 0.110) with that calculated using cross-validation (i.e., 0.128), suggesting
that although a certain overfit is possible and could have also affected the other approaches’
results, its effect should be minimal, supporting the reliability of the results. Moreover,
the use of a proper test dataset, not involved in the optimization and validation process,
led to metrics estimations comparable with the ones obtained through cross-validation
(e.g., average RF R2 obtained through cross-validation was 0.712, while the RF R2 obtained
on the test dataset was 0.723), again supporting the reliability of the approach selected for
model tuning.

Therefore, rather than being discouraging, this limitation represents a huge improve-
ment potential for the future, especially considering the easiness of sequence generation,
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compared with the difficulties of obtaining a large number of neutralization data or even
results of vaccine trials. The availability of a more extensive dataset could provide a note-
worthy improvement in our predictive tools as well as a more reliable instrument to test
their goodness.

The prompt identification of the best vaccination strategy against NDV is a challenge
that field veterinary, companies and health authorities have to face day by day and whose
success has a huge economic impact. Currently, vaccination strategies are selected based on
personal experience or empirical trials which often lead to sub-optimal and highly diverse
schemes. However, field experience suggests that a better antigenic match between vaccine
strains and field viruses could significantly improve flock protection [75]. It is also widely
recognized that ND vaccines that are phylogenetically closer to circulating field viruses appear
to be more effective at reducing NDV shedding and transmission [27,33,76]. Furthermore,
the use of antigenically matched inactivated vaccines presents significant safety features, as
velogenic vaccine-derived NDVs belonging to genotype III have been described [76].

It is noteworthy that the virus identified in this study as exhibiting the greatest
antigenic divergence from vaccine strains (i.e., NDV/chicken/rus/Krasnodar/91/19), was
the causative agent of a significant outbreak in Russia that spanned from 2019 to 2021 [75].
It is not possible to exclude that other phenotypic characteristics of this virus or other
epidemiological factors were responsible for the magnitude of the epidemic. However, the
ability to evade vaccine-induced immunity may have played a role.

The approach here described could provide a rapid and inexpensive tool to wittingly
plan vaccination strategies against emerging virus variants based on a scientific and statisti-
cal substrate.

Above all, the proposed method expands far beyond veterinary medicine. Potentially
any infectious disease can be modeled using this approach if genomic information and a
reliable measure of vaccine-induced protection are available from experimental or epidemi-
ological data to train the models. Moreover, the used approaches can be easily adapted to
categorical outcome variables (e.g., bivariate outcome: protection/non-protection) which
can be more easily obtained in a non-experimental context.

Finally, this computational tool is fully compliant with the policy of the three Rs
(Replacement, reduction, and refinement) because it would avoid the use of experimental
trials or at least reduce at minimum the number of animals involved, through the pre-
selection of a subset of theoretically efficacious vaccines.

5. Conclusions
Globally, this study describes a new methodological approach to NDV antigenic

distance prediction that, despite the limitation related to the data currently available,
provided encouraging results and could be easily improved and extended thanks to more
effective data sharing and because of the easiness of sequence and HI data generation.
This would be of great benefit to farmers, commercial poultry companies, pharmaceutical
industries, and public health authorities potentially leading to relevant improvement in
control strategies, economic performances, and animal welfare. Above all, the flexibility
of the proposed model allows us to easily extend it to other infectious diseases affecting
animals and human beings for which disease prevention and prompt control are even more
pressing but for whom ethical issues limit experimental trials.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/v17040567/s1, Figure S1: ML phylogenetic tree based on the sequences se-
lected in the present study (highlighted in red) plus the reference dataset provided by [18]. Bootstrap
support provided near the corresponding node; Figure S2: Boxplots Performance metrics obtained
through cross-validation for different methods and datasets (F, HN, and Merged); Figure S3: Differ-
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ences in performance parameters between methods pairs and datasets (F, NH, and Merged). The
average difference and the confidence interval, corrected for multiple comparisons, indicative of
statistical significance, are reported; Table S1: Table reporting the developed ML methods, the op-
timized hyperparameter, and their respective range of evaluated values. The R packages used are
also reported.
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