Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12188/33173
DC FieldValueLanguage
dc.contributor.authorLeblanc, Césaren_US
dc.contributor.authorBonnet, Pierreen_US
dc.contributor.authorServajean, Maximilienen_US
dc.contributor.authorChytrý, Milanen_US
dc.contributor.authorAćić, Svetlanaen_US
dc.contributor.authorArgagnon, Olivieren_US
dc.contributor.authorBergamini, Arielen_US
dc.contributor.authorBiurrun, Idoiaen_US
dc.contributor.authorBonari, Gianmariaen_US
dc.contributor.authorCampos, Juan A.en_US
dc.contributor.authorČarni, Andražen_US
dc.contributor.authorĆušterevska, Renataen_US
dc.contributor.authorDe Sanctis, Micheleen_US
dc.contributor.authorDengler, Jürgenen_US
dc.contributor.authorGarbolino, Emmanuelen_US
dc.contributor.authorGolub, Valentinen_US
dc.contributor.authorJandt, Uteen_US
dc.contributor.authorJansen, Florianen_US
dc.contributor.authorLebedeva, Mariaen_US
dc.contributor.authorLenoir, Jonathanen_US
dc.contributor.authorMoeslund, Jesper Erenskjolden_US
dc.contributor.authorPérez‐Haase, Aaronen_US
dc.contributor.authorPielech, Remigiuszen_US
dc.contributor.authorŠibík, Jozefen_US
dc.contributor.authorStančić, Zvjezdanaen_US
dc.contributor.authorStanisci, Angelaen_US
dc.contributor.authorSwacha, Grzegorzen_US
dc.contributor.authorUogintas, Domasen_US
dc.contributor.authorVassilev, Kirilen_US
dc.contributor.authorWohlgemuth, Thomasen_US
dc.contributor.authorJoly, Alexisen_US
dc.date.accessioned2025-04-03T07:27:51Z-
dc.date.available2025-04-03T07:27:51Z-
dc.date.issued2024-07-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/33173-
dc.description.abstract<jats:title>Abstract</jats:title><jats:sec><jats:title>Aims</jats:title><jats:p>The accurate classification of habitats is essential for effective biodiversity conservation. The goal of this study was to harness the potential of deep learning to advance habitat identification in Europe. We aimed to develop and evaluate models capable of assigning vegetation‐plot records to the habitats of the European Nature Information System (EUNIS), a widely used reference framework for European habitat types.</jats:p></jats:sec><jats:sec><jats:title>Location</jats:title><jats:p>The framework was designed for use in Europe and adjacent areas (e.g., Anatolia, Caucasus).</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>We leveraged deep‐learning techniques, such as transformers (i.e., models with attention components able to learn contextual relations between categorical and numerical features) that we trained using spatial <jats:italic>k</jats:italic>‐fold cross‐validation (CV) on vegetation plots sourced from the European Vegetation Archive (EVA), to show that they have great potential for classifying vegetation‐plot records. We tested different network architectures, feature encodings, hyperparameter tuning and noise addition strategies to identify the optimal model. We used an independent test set from the National Plant Monitoring Scheme (NPMS) to evaluate its performance and compare its results against the traditional expert systems.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>Exploration of the use of deep learning applied to species composition and plot‐location criteria for habitat classification led to the development of a framework containing a wide range of models. Our selected algorithm, applied to European habitat types, significantly improved habitat classification accuracy, achieving a more than twofold improvement compared to the previous state‐of‐the‐art (SOTA) method on an external data set, clearly outperforming expert systems. The framework is shared and maintained through a GitHub repository.</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>Our results demonstrate the potential benefits of the adoption of deep learning for improving the accuracy of vegetation classification. They highlight the importance of incorporating advanced technologies into habitat monitoring. These algorithms have shown to be better suited for habitat type prediction than expert systems. They push the accuracy score on a database containing hundreds of thousands of standardized presence/absence European surveys to 88.74%, as assessed by expert judgment. Finally, our results showcase that species dominance is a strong marker of ecosystems and that the exact cover abundance of the flora is not required to train neural networks with predictive performances. The framework we developed can be used by researchers and practitioners to accurately classify habitats.</jats:p></jats:sec>en_US
dc.publisherWileyen_US
dc.relation.ispartofApplied Vegetation Scienceen_US
dc.titleA deep‐learning framework for enhancing habitat identification based on species compositionen_US
dc.typeArticleen_US
dc.identifier.doi10.1111/avsc.12802-
dc.identifier.urlhttps://onlinelibrary.wiley.com/doi/pdf/10.1111/avsc.12802-
dc.identifier.volume27-
dc.identifier.issue3-
item.fulltextWith Fulltext-
item.grantfulltextopen-
Appears in Collections:Faculty of Natural Sciences and Mathematics, Institute of Biology: Journal Articles
Show simple item record

Page view(s)

30
checked on May 3, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.