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Abstract
Aims: The accurate classification of habitats is essential for effective biodiversity con-
servation. The goal of this study was to harness the potential of deep learning to 
advance habitat identification in Europe. We aimed to develop and evaluate models 
capable of assigning vegetation-plot records to the habitats of the European Nature 
Information System (EUNIS), a widely used reference framework for European habitat 
types.
Location: The framework was designed for use in Europe and adjacent areas (e.g., 
Anatolia, Caucasus).
Methods: We leveraged deep-learning techniques, such as transformers (i.e., mod-
els with attention components able to learn contextual relations between categorical 
and numerical features) that we trained using spatial k-fold cross-validation (CV) on 
vegetation plots sourced from the European Vegetation Archive (EVA), to show that 
they have great potential for classifying vegetation-plot records. We tested different 
network architectures, feature encodings, hyperparameter tuning and noise addition 
strategies to identify the optimal model. We used an independent test set from the 
National Plant Monitoring Scheme (NPMS) to evaluate its performance and compare 
its results against the traditional expert systems.
Results: Exploration of the use of deep learning applied to species composition and 
plot-location criteria for habitat classification led to the development of a framework 
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1  |  INTRODUCTION

The term habitat (Hall et al., 1997) encompasses a broad range of 
definitions (Yapp, 1922). In this study, we adopt the following: “plant 
and animal communities as the characterizing elements of the bi-
otic environment, together with abiotic factors (soil, climate, water 
availability and quality, and others), operating together at a partic-
ular scale” (Davies & Moss, 1999). The EUNIS habitat classification 
(Moss,  2008) uses this definition and serves as a comprehensive 
and hierarchical pan-European system for habitat identification that 
covers all types of habitats, which are identified by specific codes, 
names and descriptions. The EUNIS classification system stands 
nowadays as a widely recognized framework for European habitat 
types, as it has already played a pivotal role in numerous applica-
tions, both research and applied (Evans, 2012). It provides a com-
mon language for communication among scientists, policymakers, 
and other stakeholders. The European Environment Agency (EEA) 
initiated a (still ongoing) process of revision of the EUNIS habitat 
classification at the three (and in some cases four) highest levels of 
its classification hierarchy. This revision led to a more consistent and 
less ambiguous typology.

Habitat type classification (or identification) is a fundamental 
process integral to ecology, involving automatically classifying an 
area based on its environmental characteristics and species compo-
sition. It is done by combining observations of species co-occurrence 
or abundance with environmental estimates to classify vegetation 
plots across landscapes. Several tools for vegetation classifica-
tion with different logic and strategy are available, in particular 
machine-learning algorithms (Hastie et al., 2009) and expert systems 

(Noble, 1987). The former are tools for induction of the independent 
knowledge base, whereas the latter emulate the process of expert 
classification done by humans by using explicitly defined logical for-
mulas. These (numerical) tools can also play a vital role for nature 
conservation, landscape mapping and land-use planning and can fa-
cilitate biodiversity management (Estopinan et al., 2024). They make 
monitoring of species and habitats easier and more accurate, provide 
decision support for nature conservation and guidance for nature 
restoration and development. Thus, it can be particularly valuable in 
the current context where a significant portion of habitats are at risk 
of collapsing (at least 32% of European terrestrial habitats and 18% 
of marine habitats are threatened; Janssen et al., 2016). Therefore, 
habitat type classification has a crucial role in ecology, and using the 
EUNIS habitat classification can serve as a key instrument for as-
sessing progress toward the European Union's biodiversity targets.

On the one hand, many expert systems have been published by 
the global community (Tichý et al., 2019) and have long played a cru-
cial role in protecting and restoring habitats and species. Whether 
they classify the vegetation of precisely-defined phytosociological 
units (Marcenò et al., 2018; Novák et al., 2023), the vegetation of en-
tire countries (Chytrý, 2012; Wiser et al., 2018) or even the vegetation 
or habitats of larger areas (Mucina et al., 2016; Chytrý et al., 2020), 
these expert systems all follow human decisions. They are usually 
designed by experts who have extensive knowledge of the char-
acteristics of different habitats and their species composition. 
These systems thus employ assignment rules (species-based and/or 
location-based membership conditions) to classify vegetation plots 
into vegetation or habitat types with formal definitions. However, 
it is important to note that these definitions can evolve over time, 

containing a wide range of models. Our selected algorithm, applied to European habi-
tat types, significantly improved habitat classification accuracy, achieving a more than 
twofold improvement compared to the previous state-of-the-art (SOTA) method on 
an external data set, clearly outperforming expert systems. The framework is shared 
and maintained through a GitHub repository.
Conclusions: Our results demonstrate the potential benefits of the adoption of deep 
learning for improving the accuracy of vegetation classification. They highlight the 
importance of incorporating advanced technologies into habitat monitoring. These 
algorithms have shown to be better suited for habitat type prediction than expert 
systems. They push the accuracy score on a database containing hundreds of thou-
sands of standardized presence/absence European surveys to 88.74%, as assessed 
by expert judgment. Finally, our results showcase that species dominance is a strong 
marker of ecosystems and that the exact cover abundance of the flora is not required 
to train neural networks with predictive performances. The framework we developed 
can be used by researchers and practitioners to accurately classify habitats.

K E Y W O R D S
artificial intelligence, biodiversity monitoring, deep learning, European flora, expert system, 
habitat type identification, phytosociology, species composition, vascular plants, vegetation 
classification
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meaning that the structure of the expert systems might need to be 
modified in order to replace current provisional definitions with im-
proved ones or to use new vegetation-plot records to characterize 
habitat types. Moreover, the current version of the expert system 
for automatic classification of European vegetation plots to habitat 
types of the EUNIS habitat classification (i.e., EUNIS-ESy; Chytrý 
et al., 2021) contains some definitions that are:

•	 strict, for example, to be correctly assigned to its habitat, a vege-
tation plot should contain at least n species of a given functional 
species group, or the total cover of a discriminating species group 
in a vegetation plot should be greater than the total cover of other 
discriminating species groups in the plot;

•	 complex, for example, to be correctly assigned to its habitat, 
the total cover of a functional species group in a vegetation plot 
should be greater than that of another functional group, exclud-
ing the species of the former group from the latter group, or the 
sum of square-rooted percentage covers of the species belonging 
to a discriminating species group in a vegetation plot should be 
greater than the sum of square-rooted percentage covers of the 
species of another discriminating species group;

•	 and idiosyncratic, for example, to be correctly assigned to its hab-
itat, a vegetation plot should belong to a given data set, or a veg-
etation plot should not be located in a given country.

These intricacies motivate the exploration of alternative ap-
proaches, such as the application of deep-learning algorithms, which 
we delve into in this study.

On the other hand, even though they have shown great poten-
tial for modeling species distributions (SDM) (Botella et  al., 2018), 
modern deep-learning techniques have never been applied to clas-
sify EUNIS habitats (Joly et al., 2024a), and their application (Černá 
& Chytrý, 2005) to the classification of habitats at a global scale is 
a relatively unexplored territory (Joly et  al., 2023). Deep-learning 
techniques are types of machine-learning models that can automati-
cally learn patterns and features from large amounts of data (Botella, 
Deneu, Gonzalez, et al., 2023) and that are typically designed and 
trained by data scientists who have expertise in artificial intelligence 
(AI) and data analysis. As had already been done for species (Deneu 
et al., 2021), we sought to establish that it was feasible to map the 
extent of European Union (EU) habitats at (very) high spatial resolu-
tion (Deneu et al., 2022). Thus, we used in-situ plant species com-
position data, information on the location and some environmental 
features (Leblanc et al., 2022) in a framework with a diverse range 
of deep-learning models that could be trained for different types of 
habitats in order to reach an optimal compromise between accuracy 
and generalization. Habitat type identification has traditionally re-
lied on expert knowledge, a process that is not only time-consuming 
and costly but also susceptible to subjectivity. Advances in machine 
learning have opened new opportunities for automating this process 
using large data sets of environmental and other auxiliary data (Joly 
et al., 2024b). We built upon these techniques to enable automation 
and scalability in habitat classification, which forms the cornerstone 

of our study. AI-powered Habitat Distribution Models (HDMs) 
should thus be suited to represent how complex ecological niches 
and spatial dynamics determine the distribution of many habitats in 
a region. Machine learning could improve predictive performance in 
HDMs compared to expert systems by better mapping the actual 
realized distribution of habitat types.

We trained different models on very large volumes of data (by 
coupling EUNIS types with plant species composition recorded in 
vegetation plots) to develop, share and maintain a generic, free and 
open-source deep-learning framework capable of accurately clas-
sifying vegetation plots to their habitat types. Several crucial fea-
tures were introduced into the software package to make it generic 
and reusable in a wide variety of contexts. We focused our work 
on five key areas for (i) high modularity (for enhanced flexibility), (ii) 
new data loaders (to handle both internal and external classification 
criteria, i.e., respectively species-based and location-based criteria; 
De Cáceres et al., 2015), (iii) new model's architectures (in particular 
models based on transformers; Vaswani et al., 2017), (iv) new loss 
functions (i.e., the penalty for an incorrect classification of a vege-
tation plot, in particular for species assemblage prediction with an 
imbalanced top-k loss; Garcin et al., 2022) and, (v) a new inference 
module allowing to compute the top-k classification for any user-
specified area and plant species composition.

2  | METHODS

2.1  | Data

2.1.1  |  EVA: A comprehensive data set for habitat 
classification

Our data source for training the deep-learning framework was 
drawn from a subset of the European Vegetation Archive (EVA), 
a data repository of vegetation-plot observations (i.e., records 
of plant taxon co-occurrence and cover-abundance at particular 
sites in plots ranging from 1 m2 to a few hundred m2 that have 
been collected by vegetation scientists) from Europe and adja-
cent areas. The EVA database (Chytrý et  al.,  2016), which was 
accessed on 22 May 2023, is an initiative of the Working Group 
European Vegetation Survey (EVS). Each of the vegetation plots 
typically contained estimates of the cover abundance of each spe-
cies (vascular plants in every vegetation plot, bryophytes and/or 
lichens in some vegetation plots) alongside various supplemen-
tary details and additional sources of information on vegetation 
structure, location and environmental features. Although the EVA 
database represents a valuable resource for studying vegetation 
patterns and dynamics, we considered potential limitations stem-
ming from the representativeness of the data and the possibility 
of sampling bias (inherent to sets of data assembled from multiple 
sources and originally collected for various purposes) (Michalcová 
et al., 2011). The final data set contained a total of 886,260 geo-
referenced plots (with an average of approximately 20 species per 
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plot), 10,481 different species (see Appendix S2 for the list of all 
plants species contained in the training data set from EVA) and 
228 different habitats (see Appendix S3 for the table listing all 
habitats from the level three of the EUNIS hierarchy that are pre-
sent in the EVA training data set), all belonging to one of the eight 
habitat groups (level one EUNIS habitats) that were the focus of 
this study, often referred by their 2020 codes:

1.	 Littoral biogenic habitats (MA2) — 31,533 vegetation plots;
2.	 Coastal habitats (N) — 37,574 vegetation plots;
3.	 Wetlands (Q) — 94,100 vegetation plots;
4.	 Grasslands and lands dominated by forbs, mosses or lichens 
(R) — 298,816 vegetation plots;

5.	 Heathlands, scrub and tundra (S) — 67,494 vegetation plots;
6.	 Forests and other wooded land (T) — 251,474 vegetation plots;
7.	 Inland habitats with no or little soil and mostly with sparse veg-
etation (U) — 8018 vegetation plots;

8.	 Vegetated man-made habitats (V) — 97,251 vegetation plots.

See Appendix S4 for a detailed overview of all the preprocessing 
steps and to Figure 1 for different visualizations.

2.1.2  |  NPMS: An independent data set to 
evaluate models

To comprehensively assess and compare the transferability of 
our models and the EUNIS-ESy expert system, we also estab-
lished an independent and separate test data set whose labels 
were not generated by the EUNIS expert system or by our algo-
rithms but relied on human annotations. As most of the existing 
European vegetation-plot databases indexed in the Global Index 
of Vegetation-Plot Databases (Dengler et al., 2011) (GIVD) and the 
Global Vegetation Database (Bruelheide et al., 2019) (sPlot) were 
already included in EVA, obtaining a representative and high-
quality independent data set for model validation was challeng-
ing. To address this, we selected the National Plant Monitoring 
Scheme (NPMS) (Walker et al., 2015), which aims to survey plant 
species across different habitats in the United Kingdom by utilizing 
data collected by citizens (i.e., expert volunteers who carried out 
surveys of wildflowers and their associated habitats). This scheme 
was designed and developed collaboratively by the Botanical 
Society of Britain & Ireland, UK Centre for Ecology & Hydrology, 
Plantlife and the Joint Nature Conservation Committee. We spe-
cifically chose this data set because it offered an intriguing op-
portunity to validate the work of numerous European vegetation 
scientists across generations with a recent citizen science project 
(Bonnet et  al.,  2023) that employed a systematic protocol and 
methodology (e.g., the participants were allocated a 1-km square 
in which they had to visit five plots in semi-natural habitats twice 
a year) and encompassed a wide range of vegetation types, pro-
viding valuable insights into the potential transferability of our 
models in a real-world context, beyond expert-driven data sets. 

It offered an interesting contrast by incorporating data collected 
through citizen science (Bonnet et al., 2020), thus expanding our 
understanding of the generalization of the framework beyond tra-
ditional scientific data sets. However, this data set is by nature 
very different from EVA, and there is a significant distribution 
shift between the two due to the different collection protocols, 
so we cannot expect the same level of performance. We detail the 
preprocessing steps to create the test data set in Appendix S4. 
See Figure 2 for a visual representation of the distribution of the 
testing data set.

2.2  | Modeling

2.2.1  |  Validation: Accounting for the spatial 
structure of ecological data

The goal of this paper is to use the floristic and environmental infor-
mation in several locations to train a deep-learning tabular model 
that can predict the habitat type of given points. To mitigate the 
influence of spatial autocorrelation and to ensure that our models 
generalize well beyond the spatial structure of the training data, we 
split our data set into ten folds according to a spatial block holdout 
procedure (Roberts et al., 2017). All the vegetation plots were as-
signed into a grid of 10 km × 10 km cells; all of these cells were then 
randomly sampled for one of the folds and each fold was used once 
as an internal validation set while the nine remaining folds formed 
the training set, allowing us to perform ten-fold cross-validation (CV) 
(Stone, 1974). The performance measure reported by the ten-fold 
CV was then the average of the values computed in the loop. This 
method allowed us to evaluate our approaches in a way that limits 
the effect of the spatial bias in the data without wasting much of 
it (which can occur when arbitrarily setting aside a validation set). 
Importantly, it is worth noting that, regardless of the fold designated 
for validation in each iteration, every habitat category remained pre-
sent in the training set formed by the remaining nine folds.

2.2.2  | Models: Using deep neural networks on 
tabular data for classification

We used the ten-fold CV procedure described above to conduct a 
rigorous comparative analysis of several machine and deep-learning 
models. Since there was not an established benchmark for tabular 
data, we had to work with some of the most used and well-established 
machine and deep-learning algorithms in competitions, from ensem-
bles of decision trees (Friedman, 2001) to attention-based models 
(Bahdanau et al., 2014). To ensure fairness and optimize their perfor-
mances, we meticulously tuned each model's main hyperparameters 
(for the rest, we kept the default configurations recommended by 
the corresponding papers) (Feurer & Hutter, 2019). None of the ma-
chine and deep-learning models for tabular data described in the ex-
isting literature (Borisov et al., 2024) could consistently outperform 

 1654109x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/avsc.12802 by C

ésar L
eblanc - B

iu M
ontpellier , W

iley O
nline L

ibrary on [03/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    | 5 of 17Applied Vegetation Science
LEBLANC et al.

all the others. To thoroughly evaluate how well our models work, 
we adopted a variety of approaches and selected neuron-based 
models (i.e., models that consist of interconnected artificial neurons 
that learn complex patterns in data through forward and backward 
propagation), tree-based models (i.e., models that combine multiple 
base models to improve predictive performance with bagging or 
boosting) and transformer-based models (i.e., models that enable 
the capturing of intricate contextual relationships within input data 

for predictive accuracy). We illustrate each model and the associ-
ated training procedure in Appendix S1. Five common models were 
retained for evaluation:

1.	 A MultiLayer Perceptron classifier (MLP) (Haykin, 1998), that is, 
a fully connected class of feedforward artificial neural network. 
It works by taking input data, passing it through multiple 
layers of interconnected nodes with weighted connections 

F I G U R E  1 Hexagonal binning showing the distribution of vegetation plots from the training data set (top), zooming in on a specific bin 
with the raw spatial distribution of the vegetation plots (bottom), and a vegetation plot (assigned to the habitat type S51, i.e., Mediterranean 
maquis and arborescent matorral) with the list of co-occurring species.
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and activation functions (Bircanoğlu & Arıca, 2018), and pro-
ducing output predictions based on the learned patterns in 
the data.

2.	 A Random Forest Classifier (RFC) (Ho, 1995), that is, a meta-
estimator that fits a number of decision tree classifiers on 
various subsamples of the data set and uses averaging to im-
prove the predictive accuracy and control overfitting. A single 
decision tree works by recursively partitioning the input data 
based on the values of its features to create a tree-like struc-
ture, where each internal node represents a feature and each 
leaf node represents a decision or prediction based on the input 
data's characteristics.

3.	 An eXtreme Gradient Boosting classifier (XGB) (Chen & 
Guestrin, 2016), that is, an optimized distributed gradient-boosting 
algorithm designed to be highly efficient, flexible and portable. It 
works by iteratively training and adding decision trees to the en-
semble model, each focusing on reducing the residual errors of the 
previous trees, using a combination of gradient descent optimiza-
tion (Ruder, 2016), regularization techniques, and hardware-aware 
optimization to achieve high accuracy and scalability.

4.	 A TabNet Classifier (TNC) (Arik & Pfister, 2019), that is, a novel 
high-performance and interpretable canonical deep tabular data 
learning architecture. It works by selectively attending to the 
most informative features of the input data and using a sparse 

F I G U R E  2 Distribution of vegetation plots in the NPMS test set.
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masking technique to allow for efficient and interpretable fea-
ture selection, while employing a multistep decision-making pro-
cess and auxiliary loss functions to enhance its performance and 
generalization.

5.	 A Feature Tokenizer + Transformer classifier (FTT) (Gorishniy 
et al., 2021), that is, a model that transforms all features (categori-
cal and numerical) to embeddings and applies a stack of trans-
former layers to the embeddings. It works by transforming all 
features to tokens and running a stack of transformer layers over 
the tokens, so every transformer layer operates on the feature 
level of one object.

2.2.3  |  Encodings: Mapping current habitat 
distributions under different constraints

The vegetation plots found within EVA contain comprehensive re-
cords of plant species co-occurrences and abundances. All categori-
cal variables (i.e., the country name, the terrestrial ecoregion, the 
coastline and the location on a coastal dune) are transformed using 
the simple and widely used one-hot encoding technique (Hancock 
& Khoshgoftaar, 2020). This is an encoding method in which a par-
ticular value of a categorical variable having n possible categories 
would be encoded with a one-dimensional feature vector of length 
n where every component is zero except for the ith component, cor-
responding to the index of the particular category in the set of pos-
sible values, which has the value one. All numerical features (i.e., the 
degrees of latitude and longitude and the altitude of the vegetation 
plot in meters above sea level) were left untouched. We proposed 
different data representations (as it is known that this can be vital 
for the success or failure of models; Bengio et al., 2013) to ensure 
the framework's applicability to both abundance and presence/ab-
sence surveys (Joseph et  al., 2006). Three distinct techniques for 
plant species encoding were employed:

1.	 The cover-abundance of each species, that is, the natural log-
arithm of the raw data from EVA. In most cases, it was origi-
nally recorded using a cover-abundance scale (Westhoff & van 
der Maarel,  1978). The scale values were transformed to the 
arithmetic mid-point percent cover value corresponding to the 
individual cover-abundance class following the default values 
in the Turboveg database management program (Hennekens 
& Schaminée,  2001).

2.	 The presence/absence of each species, that is, the binarization 
of the raw data from EVA. Each non-zero entry from the original 
data was converted to the value one, and every explicit zero was 
preserved (Scherrer et al., 2020).

3.	 The reciprocal rank of each species, that is, the inverse of the or-
dinal ranking of the raw data from EVA. Each species was ranked 
in descending order of its original cover-abundance value (Brun 
et al., 2023) (from highest to lowest) and was then associated with 
the value of the inverse of its position in the ranking.

2.3  |  Evaluation

2.3.1  |  Fitting: Evaluating modeling algorithms on 
selected covariates

All details about the models and their optimization are provided 
in Appendix  S1. We evaluated the performance of the expert 
system on the training set we created. EVA data were classified 
using the EUNIS-ESy expert system (using its definitions of in-
dividual EUNIS habitats based on their species composition and 
geographic location) but we wanted to see if the vegetation plots 
would remain classified to the same habitat after interpreting the 
taxon names with the Global Biodiversity Information Facility 
(GBIF). We thus kept the same 886,260 vegetation plots, we took 
the names from the original database and proceeded to stand-
ardize them. Furthermore, unlike our experiments for which we 
kept only vascular plant species and species that were observed at 
least ten times, we also kept in this case species belonging to other 
phyla (especially bryophytes and lichens since they were used by 
the expert system in the definition of some habitats such as S12, 
i.e., moss and lichen tundra) and rare species (as rare species with 
occurrences concentrated in a particular habitat could be used as 
positive indicators of the habitat by the expert system). This pro-
cess increased the number of species observations to 18,867,936 
(instead of the 17,718,306 used to evaluate our models) and the 
number of different species to 17,885 (instead of the 10,481 used 
to evaluate our models). Two of the 886,260 vegetation plots had 
no species left after the species name matching, and as the expert 
system (unlike our framework) cannot classify vegetation plots 
solely based on external criteria, we added for both vegetation 
plots a fake species named “Unknown species” having a percent-
age cover of 10%.

2.3.2  | Metrics: Computing accuracy to evaluate 
how well the models are performing

Some of the vegetation plots that were automatically classified by 
EUNIS-ESy were assigned to two or more level-three EUNIS hab-
itats. In order to deal with that and to evaluate the effectiveness 
of our classification framework, considering the complexity of the 
habitat classification task, two key metrics were selected:

1.	 The top-one micro-average multiclass accuracy, that is, 
1

N

∑N

i=1
1
�

yi = ŷi
�

 where y is the target value (the classification 
of EUNIS-ESy) and ŷ is the predictions (the classification of 
the framework). It is the conventional accuracy: the model's 
prediction must be exactly the expected habitat type. This was 
the most important metric and played a pivotal role in our 
evaluation, as it provided crucial insights into the performance 
of our approaches when we were predicting which habitat was 
the most likely to be observed at a given location.
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2.	 The top-three accuracy, that is, 1
N

∑N

i=1
ei where ei equals 1 if 

∀k ∈ {1,2,3}, ŷi,k = yi and equals 0 otherwise and where yi is a 
single ground-truth label (produced by EUNIS-ESy) and ŷi,k are 
candidate labels (produced by the framework), both associated 
to a sample i. This means that any of the model's three highest 
probability predictions must match the expected answer. This 
metric was useful for assessing the performances of our meth-
ods on similar habitats (i.e., habitats that have almost identical 
species composition and environmental features and are thus 
hard to distinguish from one another) and on scenarios where 
a vegetation plot was associated with several different habitat 
labels.

2.3.3  |  Noise: Assessing the robustness and 
generalization of models

To enhance the robustness (Sietsma & Dow,  1991) of our ap-
proaches (to mitigate the risk of the phenomenon of overfitting; 
Dietterich, 1995), we experimented with the incorporation of con-
trolled noise to the input data. We introduced 30% of dropout, that 
is, when evaluating the performance of the models, we gave each 
present species a 30% chance of being randomly considered absent 
in the input data. This deliberate introduction of noise served the 
vital purpose of reducing the risk that our models would overfit the 
noise in the data by memorizing various peculiarities of some veg-
etation plots. Instead, it encouraged the models to identify more 
general and transferable patterns, thus bolstering their ability to 
make accurate predictions across diverse ecological contexts. It 
also helped to imitate the omission of plant species during vegeta-
tion sampling (e.g., if some species were small and not easily vis-
ible) (Morrison, 2021). After encoding the data and adding (or not) 
noise, standardization of the features to a mean of observed values 
of zero and a standard deviation of one was always initiated (these 
values were estimated from the training data, and then the trans-
formation was consistently applied across all data sets), as it has 
been shown that such manipulation can be of benefit to some mod-
els by improving the numerical stability of the calculations (Kuhn & 
Johnson, 2013).

3  |  RESULTS

3.1  |  Selection: Finding the best-performing model

Table 1 contains a comprehensive overview of all the results we ob-
tained (with the models already tuned), showcasing the performance 
of each model–encoding combination. Among the various configura-
tions tested, the model–encoding combination with the best results 
is a MLP coupled with features encoded using the reciprocal rank 
method. This configuration outperformed other models both with 
and without noise addition to the data and when measuring the per-
formance with the top-one micro-average multiclass accuracy (since 
it is the best suited metric in our case, as we want to prioritize the 
most likely habitat for each vegetation plot).

Moreover, to gain insights into the run time (since all the ex-
periments were conducted under the same conditions and some 
people may have to use the models in the regime of a low-tuning 
time budget), we plotted the time–performance characteristic for 
the models in Figure 3. For each meticulously tuned configuration, 
we reported both the averaged evaluation performance obtained 
on the ten CV folds (denoting how well the models can generalize 
to unseen samples) and the results obtained on the test set (using 
the models trained on the entire EVA data set, without holding out 
part of the available data). As the encoding and the noise addition 
did not significantly affect the evaluation time or the inference time, 
we only show the time of the models used with the reciprocal rank 
and without noise addition. We can see that all models, except XGB, 
have similar evaluation and inference times, so there is no univer-
sally superior solution in terms of time resources. These two com-
parisons (Table 1 and Figure 3) allowed us to make some interesting 
findings, highlighting the nuanced trade-offs between various mod-
els and encodings, and emphasizing the importance of selecting the 
most appropriate approach based on both performance and runtime 
considerations:

•	 Models based on decision tree ensembles, such as RFC or XGB, can 
still outperform some of the deep-learning models (MLP, TNC and 
FTT) we kept in our experiments, while requiring either a shorter 
(RFC) or a significantly longer (XGB) amount of time to train.

TA B L E  1 Comparison of the top-one (in bold) and top-three (in italics) micro-average multiclass accuracy averaged over the ten cross-
validation (CV) folds for every model and encoding, with and without noise addition (best top-one result overall with and without noise 
addition in green background shading).

Models

Ten-fold CV Ten-fold CV with 30% dropout

Cover abundance Presence/absence Reciprocal rank Cover abundance Presence/absence Reciprocal rank

MLP 88.33/97.99 76.69/95.78 88.74/98.55 72.12/86.46 65.83/88.22 73.20/89.19

RFC 80.31/95.72 73.44/93.74 79.39/95.41 72.56/91.88 66.32/89.90 72.62/92.20

XGB 88.33/98.84 76.52/96.23 86.80/98.56 73.18/88.15 64.74/86.08 72.49/88.58

TNC 79.02/91.55 68.73/87.99 80.22/92.24 65.75/81.17 60.37/82.04 67.20/82.95

FTT 86.62/96.88 75.09/93.78 86.98/97.18 71.18/84.83 64.76/86.50 71.68/86.21
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•	 Although there has been a clear trend toward transformer-based 
solutions in recent years, these models, such as TNC and FTT, do 
not consistently outperform standard neural network architec-
tures, such as MLP.

•	 The reciprocal rank encoding usually leads to a better top-one 
performance than the cover abundance (except for tree-based 
models), despite providing less information about the plant spe-
cies composition in a given vegetation plot.

•	 When it comes to top-three performance, there is no ubiquitous 
encoding technique. However, it seems that there is a trend to-
ward decision tree ensembles (RFC and XGB), as the best models, 
with and without noise addition, are always tree-based.

•	 Recent state-of-the-art specialized neural network architectures 
(e.g., TNC and FTT) and strong traditional machine learning meth-
ods (e.g., RFC and XGB) do not provide any benefit over a tuned 
MLP, which is still more than a simple baseline or a good sanity 
check (Kadra et al., 2021).

Based on these promising findings, we opted to proceed with 
the configuration that emerged as the standout performer (i.e., 
using a MLP classifier with features encoded using the reciprocal 
rank method and no noise addition) for the subsequent experiments. 
Indeed, this option was the best trade-off between predictive perfor-
mance and computational complexity. As the top-three performance 
of EUNIS-ESy could not be evaluated due to its intrinsic nature, we 
selected the model with the best top-one accuracy. Moreover, as 
the EVA data set contained data from all European regions (and not 
just the UK), we opted for the best-performing model of the ten-fold 
CV evaluation phase. This strategic choice would be useful for the 
next phases of our research (i.e., evaluation and interpretability of 
this configuration and rigorous comparison with the expert system). 
Having concluded the rigorous process of model selection, which 
included hyperparameter tuning and the identification of the most 
effective encoding technique, we proceeded to re-train the chosen 
model on the entire training data set. This approach allowed us to 
evaluate the model's performance in a holistic manner (i.e., without 

partitioning the available data into sets and holding out one of them 
for evaluation) to compare it to the EUNIS-ESy.

3.2  |  Evaluation: Diving into the 
performance of the best model

Up until now, we employed the micro-average multiclass accuracy to 
measure the performance of our models. Due to significant class im-
balance within the data set (e.g., we had almost 10,000 times more 
vegetation plots of the R22 habitat than vegetation plots of the R1L 
habitat in the training set), we aggregated the contributions of all 
habitats to compute the average metric. However, in some cases, 
the micro-average may not be the most appropriate metric to evalu-
ate the overall performance of the models. For example, what if we 
were interested in measuring the performance of the model on each 
habitat separately, rather than considering the overall performance 
of the model across all habitats? For such cases, in addition to the 
introduced metrics, we also computed the macro-average multiclass 
accuracy metric (still with k = 1 and k = 3), which is obtained by com-
puting micro-average multiclass accuracy for each class separately 
and then taking the average over classes. This approach ensured 
that the habitats with only a few vegetation plots contributed the 
same as the habitats with thousands of vegetation plots to the as-
sessment of the model's performance. The use of the macro-average 
multiclass accuracy mitigated the potential issue of smaller classes 
being overshadowed by larger classes in the overall evaluation of the 
model's performance.

Before delving into the habitat-specific performance of our 
model, we conducted further experimentation by training two new 
MLPs with the reciprocal rank encoding using the same hyperpa-
rameters as before, except for one crucial alteration: the reduc-
tion applied over labels was replaced by the macro-average. The 
statistics were calculated for each habitat type (instead of each 
vegetation plot) and then averaged, but we still used one and three 
as the numbers of highest probability or logit score predictions 

F I G U R E  3 Evaluation of time-performance characteristics for selected models on the ten cross-validation folds of the entire EVA training 
data set of 886,260 vegetation plots (left) and prediction on the NPMS testing data set of 7521 samples (right), with features encoded 
with the reciprocal rank method (without noise addition). The circle size reflects the top-one micro-average multiclass accuracy standard 
deviation (left) and the size of the model, that is, the number of trainable parameters for deep-learning algorithms and the number of 
estimators (i.e., respectively the number of trees in the forest for RFC and the number of gradient-boosted trees for the XGB) for machine-
learning algorithms (right).
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considered to find the correct habitat types. There are many more 
variations between the different folds and a reduction in overall 
accuracy compared to our previous micro-average results (across 
all ten CV folds, the model achieved an average multiclass macro-
average accuracy of respectively 73.97% and 90.80% for the 
top-one and top-three metrics, against an average of 88.74% and 
98.55% in micro-average accuracy). While our goal was to maintain 
consistency by employing the same model throughout our exper-
iments, it is important to acknowledge that for habitat-wise per-
formance assessments, it is possible to enhance the results of the 
MLP model. One promising avenue for improvement is to explore 
alternative loss functions, for example by switching the currently 
employed loss function (i.e., the cross-entropy loss; Good, 1952) 
for the imbalanced top-one and top-three losses, which, after 
fine-tuning using a grid of parameter values recommended by the 
authors of the function, outperformed the model's performance 
under the existing setup.

3.3  |  Comparison: Evaluating the performance of 
hdm-framework and EUNIS-ESy

Of all 886,260 vegetation plots from the data set we used for the ex-
pert system, 742,498 were classified to exactly one habitat of level 
three of one of the eight habitat groups we considered in this study 
(i.e., MA2, N, Q, R, S, T, U or V). Among the 143,762 other vegetation 
plots, 11% (i.e., 15,558 vegetation plots) remained unclassified and 
4% (i.e., 5748) were classified to more than one habitat. The rest of 
the vegetation plots (i.e., 122,456 vegetation plots) were classified 
as habitat groups (i.e., level one habitats), broad habitat types (i.e., 
level two habitats) or unrevised habitats (i.e., habitats not part of 
the current EUNIS list). The expert system achieved an accuracy of 
85.20%. As the expert system itself was the tool that was used to 
classify the vegetation plots from EVA, this study shows the lack of 
robustness to species name standardization of the expert system 
which clearly overfits the original data.

In addition, we performed a comprehensive performance com-
parison between our selected model and the expert system on the 
NPMS test set, presenting the results in Table  2. For this analy-
sis, we used the model trained on the entirety of the EVA data 

set, without holding out one of the folds for evaluation. We dive 
deeper into this evaluation exercise and the disparity in perfor-
mance scores observed between the EVA and the NPMS data sets 
in Appendix S5.

3.4  |  Interpretability: Understanding how the 
models reason

How the models qualitatively enhance habitat classification is a 
major question. To answer the increase in model complexity and 
the resulting lack of transparency, we leveraged different model 
interpretability methods (e.g., integrated gradients and feature 
ablation). These are discussed in Appendix S6, in which we dive 
into the explainability of our models and the ecological interpret-
ability of the results. These state-of-the-art algorithms helped to 
provide an easy way to understand which features (e.g., which 
specific plant species) are contributing the most to the model's 
output. In particular, the implementation of interpretability algo-
rithms can help both researchers and practitioners by facilitating 
the identification of different plant species that lead the model 
to assign a vegetation plot to a given habitat type. For example, 
Figure 4 shows that around 85% of the information about the hab-
itat classification of a vegetation plot is contributed by vascular 
plant species alone. Additional results include but are not limited 
to the following:

•	 The most dominant species inside a vegetation plot are very im-
portant in the model's output (e.g., on average, in a vegetation 
plot containing ten species, over 50% of the total importance is 
contributed solely by the first two species).

•	 On average, the model gives more importance to herbaceous spe-
cies (more than 80%) than to arborescent species (less than 20%), 
even though this trend is reversed for forests and other wooded 
land.

•	 Using solely plant species composition (with neither environ-
mental nor location features) does not decrease the accuracy of 
the model and it sometimes slightly increases it (e.g., the MLP 
averages 88.74% with all features and 88.75% with only species 
composition).

Hdm-framework EUNIS-ESy

Test accuracy
Top-one micro-average multiclass accuracy

37.42% 15.89%

Data requirements
Accuracy with neither location nor environmental features

35.39% 15.42%

Representation learning
Accuracy with presence/absence data

35.58% 11.63%

Noise robustness
Accuracy with 30% dropout

34.50% 13.50%

Calculation speed
Time it takes to make predictions

0.42 s 23.91 s

TA B L E  2 Performance comparison 
of hdm-framework and EUNIS-ESy for 
vegetation-plot classification across 
various evaluation metrics on the NPMS 
test set.
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4  | DISCUSSION

4.1  | Main advantages of hdm-framework

We explain in detail the methodology and use of hdm-framework 
in Appendix S7. For an overview of the primary tasks that can be 
accomplished using the framework, please refer to Figure 5. Our dif-
ferent experiments have highlighted the remarkable efficacy of AI in 
classifying vegetation-plot records into their respective EUNIS habi-
tats, marking a significant milestone as the first tool to automate this 
process across Europe using deep-learning techniques. Notably, our 

framework not only surpasses the performance of traditional expert 
systems but also achieves over double the classification accuracy, 
all while processing data more than 50 times faster than a recently 
developed electronic expert system. This efficiency carries pro-
found academic and practical implications, benefiting phytosociolo-
gists and related fields by potentially expediting research processes 
and enabling timely conservation initiatives. Furthermore, our work 
not only underscores the potential of AI within this domain but also 
points toward a broader paradigm shift in favor of advanced AI so-
lutions. While we acknowledge the need for continued exploration 
and potential challenges on the horizon, our framework lays a robust 
foundation for future research and applications in habitat classifica-
tion. It represents a significant leap forward in the practical utility of 
the EUNIS habitat classification system.

EUNIS-ESy, relying on species cover information, encounters 
limitations when attempting to classify vegetation plots that only 
record the presence of species without specifying their covers. In 
contrast, our hdm-framework seamlessly accommodates presence-
only data, extending the applicability of such data. Furthermore, tra-
ditional expert systems typically assess every vegetation plot within 
a database, scrutinizing each one to determine if it aligns with one 
or more predefined habitat definitions specified in their scripts. This 
process can sometimes lead to vegetation plots remaining unclas-
sified by the expert system. In contrast, the deep-learning models 
we present in this study were meticulously trained to assign each 
vegetation plot to (at least) one habitat, which is consistent with the 
EUNIS habitat classification that was designed to cover all habitat 
types occurring in Europe.

Hdm-framework is an HDM platform facilitating the use of spe-
cies occurrence data and environmental features retrieved from 
multiple sources. Inspired by the existing literature, we proposed 
several methods that are fast enough to deliver results for thou-
sands of vegetation plots in less than a second. Provided with a set 
of 195 tunable parameters, hdm-framework has been designed for 
high customization flexibility, so it can be adapted to anyone's objec-
tives and computing environment. In contrast to the expert system 
which does not itself extract environmental features, the frame-
work will derive them from the vegetation-plot coordinates using 
the relevant shapefiles already provided and store the calculated 

F I G U R E  4 Doughnut chart showing the most important 
group of features of the EVA data set according to the integrated 
gradients method (applied to the MLP model trained using the 
reciprocal rank encoding without noise addition). The group 
“Species” contains the sum of the importance of all species. The 
group “Environment” contains the sum of the importance of all five 
environmental variables (i.e., the altitude, the country name, the 
terrestrial ecoregion, the coastline and the location on a coastal 
dune). The group “Location” contains the sum of the importance of 
both longitude and latitude.

F I G U R E  5 Overview of hdm-framework. The panels display the sequence of tasks performed during each of the four main stages (data 
set preparation, parameters evaluation, model training and habitats prediction).

 1654109x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/avsc.12802 by C

ésar L
eblanc - B

iu M
ontpellier , W

iley O
nline L

ibrary on [03/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



12 of 17  |     Applied Vegetation Science
LEBLANC et al.

values (e.g., location on coastal dunes or in a certain ecoregion) in 
the header data of the vegetation plots.

4.2  |  Potential improvements for practical 
applications

We discuss the inherent limitations of the training and testing 
data set in Appendix  S4. An essential aspect of our methodol-
ogy revolves around the standardization of species names using 
the GBIF Backbone Taxonomy. This step plays a pivotal role in 
ensuring consistency and facilitating cross-data set comparisons, 
making it a necessary component of our approach. However, it is 
important to acknowledge that this process comes with inherent 
trade-offs, including the loss of valuable information pertaining 
to species variations and local taxonomic nuances. The harmo-
nization of species names, while promoting uniformity, can inad-
vertently lead to the amalgamation of distinct taxa or the division 
of a single taxon into multiple names. Such outcomes have the 
potential to influence the accuracy of our classification results. 
Notably, in some instances, phytosociology experts conducting 
vegetation surveys may have recorded species at a higher taxo-
nomic level, such as specifying the genus (e.g., Quercus), without 
providing precise species designations. This practice presents a 
challenge during the standardization  process, particularly when 
the GBIF Backbone Taxonomy relies on explicit species informa-
tion. Consequently, the standardization of higher-level taxonomic 
names may not always be feasible, potentially impacting the pre-
cision of species classification within our framework. Although 
information recorded at a high taxonomic levels (such as genus) 
can rarely be informative for habitat classification, it is impera-
tive to recognize and navigate this inherent trade-off between 
achieving consistency and comparability through species name 
standardization and the potential loss of finer taxonomic details. 
This trade-off significantly influences the interpretation and reli-
ability of our classification results, warranting careful considera-
tion in our biodiversity monitoring efforts. Furthermore, the GBIF 
Application Programming Interface (API) works against data kept 
in the GBIF Checklist Bank (in partnership with the Catalogue of 
Life; Bánki et al., 2023) which taxonomically indexes all registered 
checklist data sets in the GBIF network. It is important to note 
that this taxonomy store is constantly evolving through updates 
and takes taxonomic and nomenclatural information from differ-
ent and new sources, thus potentially resulting in unreproducible 
results. However, the widespread public deployment of large lan-
guage models in recent months (Zhao et al., 2023) might offer new 
opportunities. For example, it could soon be possible to train AI 
tools on data that have non-standardized nomenclature.

Moreover, the efficacy of our model is intrinsically linked to 
the taxonomic diversity of vascular plant species present in the 
training data set (EVA). As our models are trained on this data 
set, their ability to recognize and classify species is contingent 
on exposure during training. While in Europe there are more than 

20,000 species of vascular plants (Euro+Med, 2006), our frame-
work was trained on a subset comprising 10,481 distinct vascu-
lar plants. Consequently, when tasked with classifying plots that 
contain species not represented in the training set, certain lim-
itations come to the forefront. In instances where our trained 
models encounter species absent from the training data, it be-
comes necessary to exclude those unrepresented species as our 
models would lack familiarity with them. Consequently, this con-
straint introduces the potential for classification errors, especially 
in scenarios where a substantial proportion of species within a 
plot diverges from those within the training set. This limitation 
is a crucial consideration when applying our framework to novel 
data sets (Schmidt et al., 2012) or data sets characterized by high 
species diversity (Botella, Deneu, Marcos, et  al.,  2023). To en-
hance the framework's utility and robustness, future endeavors 
could concentrate on broadening the training set to encompass 
a more extensive spectrum of species. This expansion could be 
achieved through various means, including the acquisition of sup-
plementary data sources (Estopinan et al., 2022) or collaboration 
with domain experts to identify and incorporate missing species 
(Szymura et al., 2023). Being less cautious during the data curation 
phase (e.g., by not removing rare species or species with fuzzy or 
ambiguous names) could also be an option. Exploring strategies 
to mitigate the impact of species mismatch between training and 
testing data would be pivotal, further augmenting the framework's 
versatility and applicability in diverse vegetation classification 
scenarios.

An essential limitation of our framework pertains to its reli-
ance on predefined habitats for classification. The predictions 
generated by our models are grounded in the established defini-
tions of EUNIS habitats at the time of model training. In this paper, 
we focus on eight distinct habitat groups, reflecting the updated 
EUNIS classification: littoral biogenic habitats, coastal habitats, 
wetlands, grasslands and lands dominated by forbs, mosses or li-
chens, heathlands, scrub and tundra, forests and other wooded 
land, inland habitats with no or little soil and mostly with sparse 
vegetation, and vegetated man-made habitats. However, it is par-
amount to recognize that the dynamism of environmental classifi-
cations can result in evolving habitat definitions or the emergence 
of entirely new habitats, driven by agencies such as the EEA. The 
EUNIS habitat classification itself is currently undergoing a process 
of revision, and four habitat groups are pending review (inland wa-
ters; wetlands; constructed, industrial and other artificial habitats; 
and complexes). In this respect, leaving some unclassified vegeta-
tion plots within the training data could be useful to determine if 
new habitat types need to be defined. AI techniques could even 
be used for the definition of those new habitat classes. In addition, 
climate change (e.g., an increase in temperatures and a decrease in 
precipitation) and other human influences (e.g., intensification for 
more productive farming and abandonment of traditional land use) 
are altering biodiversity, potentially leading to species composi-
tion change in some habitats (Blowes et al., 2019). In such cases, 
our models would necessitate retraining with vegetation plots 
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categorized according to these revised or newly established hab-
itat types. This process can be resource-intensive and potentially 
environmentally taxing, given the associated energy consumption 
(Strubell et al., 2020). Therefore, we must acknowledge this lim-
itation and emphasize the importance of periodic model updates 
to align with any changes in habitat definitions. Furthermore, it 
underscores the need to consider the ecological footprint of these 
retraining procedures and explore strategies to optimize their effi-
ciency and sustainability. This may encompass efforts to minimize 
energy consumption, employ renewable energy sources during 
the training phase, or investigate eco-friendly training method-
ologies. By doing so, we can ensure that our framework remains 
adaptable and environmentally responsible in the face of evolving 
habitat classifications.

Currently, our framework operates by selecting an integer k (by 
default set to one) and returning the top-k habitats with the high-
est score, a method known as top-k classification. Given the com-
plexity of classifying vegetation plots into a substantial number of 
habitats (a total of 228), relying on a single value for k can lead to 
challenges in precision. To address this issue, we conducted ex-
periments with k equal to 3. However, our observations revealed 
that in cases of high certainty, such as T3B (i.e., Pinus canariensis 
forest, where our MLP model, trained using the reciprocal rank 
feature encoding method without noise addition, achieved an im-
pressive average top-one micro-average multiclass accuracy of 
98.95% across all ten folds), employing k larger than 1 resulted 
in an excessive number of predictions. Conversely, for instances 
characterized by significant ambiguity, like R1L (i.e., Madeiran 
oromediterranean siliceous dry grassland, where the same model, 
trained using the same method, achieved an average accuracy of 
0.00% with the same metric and evaluation procedure, although 
it should be noted that only ten occurrences of this habitat are 
present in EVA), employing a k-value of 3 or less (for example) 
proved to be overly restrictive. An alternative and promising strat-
egy to address this challenge is the implementation of conformal 
prediction (Gammerman et al., 2013). This approach dynamically 
adjusts the number of predicted habitats based on the computed 
ambiguity for each sample, while still aiming to maintain an aver-
age of k predictions across all samples, a technique referred to as 
average-k classification (Lorieul et al., 2021). While this approach 
presents a potential solution for handling ambiguity more effec-
tively, it is important to note that it has not yet been integrated 
into our framework but represents a promising avenue for future 
development.

5  |  CONCLUSIONS

In summary, the deep-learning framework presented in this paper 
has demonstrated its remarkable capability to accurately assign 
vegetation-plot records to their respective EUNIS habitats, as 
confirmed through rigorous expert evaluation. This framework 
not only achieves high accuracy and clearly outperforms European 

expert systems but also ushers in a new era of possibilities. It helps 
big vegetation data classification and management. The results 
produced, which are understandable to experts in vegetation clas-
sification, highlight the importance of dominant species and the 
species composition of sites as a whole. The fusion of data sources 
offers unprecedented flexibility, making it suitable for a wide spec-
trum of applications across diverse habitat types. For instance, as 
we consistently assign a substantial number of vegetation plots 
from various European regions to EUNIS habitat classifications 
using our framework, it paves the way for precise characteriza-
tions of species composition, distribution patterns, and their in-
tricate environmental associations within these habitats. The 
development of this comprehensive framework represents a sig-
nificant step toward more efficient, accurate and cost-effective 
classification of habitat types.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
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the list of fixed hyperparameters with the selected values, and 
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optimizing each combination.
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