Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис:
http://hdl.handle.net/20.500.12188/33144
Наслов: | Generalized Almost Periodicity in Measure | Authors: | Marko Kostic, Wei-Shih Du, Halis Can Koyuncuoglu, Daniel Velinov | Keywords: | Weyl ρ-almost periodic functions; Doss ρ-almost periodic functions; general measure; convolution products; Volterra integro-differential inclusions | Issue Date: | 2024 | Publisher: | MDPI | Abstract: | This paper investigates diverse classes of multidimensional Weyl and Doss ρ-almost periodic functions in a general measure setting. This study establishes the fundamental structural properties of these generalized ρ-almost periodic functions, extending previous classes such as m-almost periodic and (equi-)Weyl-p-almost periodic functions. Notably, a new class of (equi-)Weyl p-almost periodic functions is introduced, where the exponent p > 0 is general. This paper delves into the abstract Volterra integro-differential inclusions, showcasing the practical implications of the derived results. This work builds upon the extensions made in the realm of Levitan N-almost periodic functions, contributing to the broader understanding of mathematical functions in diverse measure spaces. | URI: | http://hdl.handle.net/20.500.12188/33144 | DOI: | https://doi.org/10.3390/math12040548 |
Appears in Collections: | Faculty of Civil Engineering: Journal Articles |
Прикажи целосна запис
Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.