Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/33144
Наслов: Generalized Almost Periodicity in Measure
Authors: Marko Kostic, Wei-Shih Du, Halis Can Koyuncuoglu, Daniel Velinov
Keywords: Weyl ρ-almost periodic functions; Doss ρ-almost periodic functions; general measure; convolution products; Volterra integro-differential inclusions
Issue Date: 2024
Publisher: MDPI
Abstract: This paper investigates diverse classes of multidimensional Weyl and Doss ρ-almost periodic functions in a general measure setting. This study establishes the fundamental structural properties of these generalized ρ-almost periodic functions, extending previous classes such as m-almost periodic and (equi-)Weyl-p-almost periodic functions. Notably, a new class of (equi-)Weyl p-almost periodic functions is introduced, where the exponent p > 0 is general. This paper delves into the abstract Volterra integro-differential inclusions, showcasing the practical implications of the derived results. This work builds upon the extensions made in the realm of Levitan N-almost periodic functions, contributing to the broader understanding of mathematical functions in diverse measure spaces.
URI: http://hdl.handle.net/20.500.12188/33144
DOI: https://doi.org/10.3390/math12040548
Appears in Collections:Faculty of Civil Engineering: Journal Articles

Прикажи целосна запис

Google ScholarTM

Проверете

Altmetric


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.