Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12188/33144
DC FieldValueLanguage
dc.contributor.authorMarko Kostic, Wei-Shih Du, Halis Can Koyuncuoglu, Daniel Velinoven_US
dc.date.accessioned2025-03-31T11:08:58Z-
dc.date.available2025-03-31T11:08:58Z-
dc.date.issued2024-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/33144-
dc.description.abstractThis paper investigates diverse classes of multidimensional Weyl and Doss ρ-almost periodic functions in a general measure setting. This study establishes the fundamental structural properties of these generalized ρ-almost periodic functions, extending previous classes such as m-almost periodic and (equi-)Weyl-p-almost periodic functions. Notably, a new class of (equi-)Weyl p-almost periodic functions is introduced, where the exponent p > 0 is general. This paper delves into the abstract Volterra integro-differential inclusions, showcasing the practical implications of the derived results. This work builds upon the extensions made in the realm of Levitan N-almost periodic functions, contributing to the broader understanding of mathematical functions in diverse measure spaces.en_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.subjectWeyl ρ-almost periodic functions; Doss ρ-almost periodic functions; general measure; convolution products; Volterra integro-differential inclusionsen_US
dc.titleGeneralized Almost Periodicity in Measureen_US
dc.identifier.doihttps://doi.org/10.3390/math12040548-
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:Faculty of Civil Engineering: Journal Articles
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.