Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/32577
Наслов: 2024 11th International Conference on Electrical, Electronic and Computing Engineering (IcETRAN)
Authors: M. Srbinovska, S. Pechkova, A. Pechkov, M. Celeska Krstevska, A. Krkoleva Mateska, P. Dimovski, V. Andova
Keywords: air pollution, particular matter, lasso, prediction
Issue Date: 3-јун-2024
Publisher: IEEE
Abstract: The study delves into the realm of air quality forecasting, employing the LASSO (Least Absolute Shrinkage and Selection Operator) modeling technique for enhanced predictive accuracy. Utilizing a diverse dataset encompassing meteorological parameters, pollutant concentrations, and other relevant factors, the research explores the robustness of LASSO regression in predicting air pollution dynamics. The analysis establishes correlations and identifies key predictors, shedding light on the intricate relationships within the data. The paper contributes valuable insights to the field of air quality prediction, showcasing the efficacy of LASSO modeling in providing accurate and reliable forecasts, thus facilitating proactive measures for pollution mitigation and environmental management. Additionally, the aim of the paper is to investigate whether the COVID-19 pandemic exerted any discernible impact on pollution levels.
URI: http://hdl.handle.net/20.500.12188/32577
DOI: 10.1109/icetran62308.2024
Appears in Collections:Faculty of Electrical Engineering and Information Technologies: Journal Articles

Прикажи целосна запис

Page view(s)

44
checked on 3.5.2025

Google ScholarTM

Проверете

Altmetric


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.