Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/27408
DC FieldValueLanguage
dc.contributor.authorSekuloski, Petaren_US
dc.contributor.authorDimitrievska Ristovska, Vesnaen_US
dc.date.accessioned2023-08-15T09:55:17Z-
dc.date.available2023-08-15T09:55:17Z-
dc.date.issued2023-07-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/27408-
dc.description.abstractTopological Data Analysis (TDA) is a new area of Applied Mathematics that has become increasingly popular in recent years. TDA utilizes Persistent Homology, a mathematical tool that analyzes the topology of data sets. The focus of this paper is on using Persistent Homology to extract topological signatures from digital images and investigate how these signatures can improve image classification. In this short paper there are some preliminary results obtained on real world digital image datasets. There are improvement in evaluation metrics from 19% to 37%, using topological signatures.en_US
dc.publisherSs Cyril and Methodius University in Skopje, Faculty of Computer Science and Engineering, Republic of North Macedoniaen_US
dc.relation.ispartofseriesCIIT 2023 papers;33;-
dc.subjecttopological data analysis, persistent homology, image classification, computational topologyen_US
dc.titleClassification of digital images using topological signaturesen_US
dc.typeProceeding articleen_US
dc.relation.conference20th International Conference on Informatics and Information Technologies - CIIT 2023en_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
Appears in Collections:Faculty of Computer Science and Engineering: Conference papers
Files in This Item:
File Опис SizeFormat 
CIIT2023_paper_33.pdf9.18 MBAdobe PDFView/Open
Прикажи едноставен запис

Page view(s)

59
checked on 4.5.2025

Download(s)

52
checked on 4.5.2025

Google ScholarTM

Проверете


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.