Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/27385
DC FieldValueLanguage
dc.contributor.authorKitanovski, Aleksandaren_US
dc.contributor.authorMihajloska Trpcheska, Hristinaen_US
dc.contributor.authorDimitrova, Vesnaen_US
dc.date.accessioned2023-08-14T08:39:41Z-
dc.date.available2023-08-14T08:39:41Z-
dc.date.issued2023-07-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/27385-
dc.description.abstractThe omnipresence of Android devices and the amount of sensitive information kept in them makes detecting malware in Android applications crucial. In this paper, the efficacy of using machine learning models for the purpose of malware detection in Android applications was examined, and several XGBoost models were developed and compared - each with a distinct feature set. We used the f1 score, precision, recall, confusion matrices, and precision-recall curves to compare the models. Accuracy was not considered since we needed a balanced dataset. One of the models we developed, which used all the available features in the dataset, had encouraging results with high precision and recall.en_US
dc.publisherSs Cyril and Methodius University in Skopje, Faculty of Computer Science and Engineering, Republic of North Macedoniaen_US
dc.relation.ispartofseriesCIIT 2023 papers;10;-
dc.subjectXGBoost, detecting malware, Android applicationsen_US
dc.titleDetecting Malware in Android Applications using XGBoosten_US
dc.typeProceeding articleen_US
dc.relation.conference20th International Conference on Informatics and Information Technologies - CIIT 2023en_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.author.deptFaculty of Computer Science and Engineering-
Appears in Collections:Faculty of Computer Science and Engineering: Conference papers
Files in This Item:
File Опис SizeFormat 
CIIT2023_paper_10.pdf9.18 MBAdobe PDFView/Open
Прикажи едноставен запис

Page view(s)

139
checked on 4.5.2025

Download(s)

69
checked on 4.5.2025

Google ScholarTM

Проверете


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.