Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис:
http://hdl.handle.net/20.500.12188/27385
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kitanovski, Aleksandar | en_US |
dc.contributor.author | Mihajloska Trpcheska, Hristina | en_US |
dc.contributor.author | Dimitrova, Vesna | en_US |
dc.date.accessioned | 2023-08-14T08:39:41Z | - |
dc.date.available | 2023-08-14T08:39:41Z | - |
dc.date.issued | 2023-07 | - |
dc.identifier.uri | http://hdl.handle.net/20.500.12188/27385 | - |
dc.description.abstract | The omnipresence of Android devices and the amount of sensitive information kept in them makes detecting malware in Android applications crucial. In this paper, the efficacy of using machine learning models for the purpose of malware detection in Android applications was examined, and several XGBoost models were developed and compared - each with a distinct feature set. We used the f1 score, precision, recall, confusion matrices, and precision-recall curves to compare the models. Accuracy was not considered since we needed a balanced dataset. One of the models we developed, which used all the available features in the dataset, had encouraging results with high precision and recall. | en_US |
dc.publisher | Ss Cyril and Methodius University in Skopje, Faculty of Computer Science and Engineering, Republic of North Macedonia | en_US |
dc.relation.ispartofseries | CIIT 2023 papers;10; | - |
dc.subject | XGBoost, detecting malware, Android applications | en_US |
dc.title | Detecting Malware in Android Applications using XGBoost | en_US |
dc.type | Proceeding article | en_US |
dc.relation.conference | 20th International Conference on Informatics and Information Technologies - CIIT 2023 | en_US |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
crisitem.author.dept | Faculty of Computer Science and Engineering | - |
Appears in Collections: | Faculty of Computer Science and Engineering: Conference papers |
Files in This Item:
File | Опис | Size | Format | |
---|---|---|---|---|
CIIT2023_paper_10.pdf | 9.18 MB | Adobe PDF | View/Open |
Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.