
Detecting Malware in Android Applications using

XGBoost

Aleksandar Kitanovski, Hristina Mihajloska Trpcheska and Vesna Dimitrova

Faculty of Computer Science and Engineering

Ss. Cyril and Methodius University, Skopje, N. Macedonia

aleksandar.kitanovski@students.finki.ukim.mk,

hristina@finki.ukim.mk,

vesna.dimitrova@finki.ukim.mk

Abstract—The omnipresence of Android devices and the
amount of sensitive information kept in them makes detecting
malware in Android applications crucial. In this paper, the
efficacy of using machine learning models for the purpose of
malware detection in Android applications was examined, and
several XGBoost models were developed and compared - each
with a distinct feature set. We used the f1 score, precision, recall,
confusion matrices, and precision-recall curves to compare the
models. Accuracy was not considered since we needed a balanced
dataset. One of the models we developed, which used all the
available features in the dataset, had encouraging results with
high precision and recall.

Index Terms—XGBoost, detecting malware, Android applica-
tions

I. INTRODUCTION

A. Malware Detection

Malware (or malicious software) is designed to harm in-

tentionally, leak private information, gain unauthorized ac-

cess, deprive users of access to information, or unknowingly

interfere with the user’s system security or privacy. Mobile

malware is malware that explicitly targets mobile phones or

personal digital assistants (PDAs). Common ways of avoiding

malware are using antivirus software, and firewalls, applying

regular patches to reduce the risk of zero-day attacks, creating

regular backups, etc. But as mobile phones have become more

common and complex, it has become increasingly challenging

to ensure their safety from malware [5]. Also, malware is now

being designed to avoid antivirus detection [13], and recent

studies have shown that antivirus programs are ineffective

against mobile malware due to its rapid evolution [12]; because

of this, the development of models that can detect novel

malware, without the need for manual rules or signatures, is

crucial.

B. Classification

Classification is a process of categorizing a set of data into

given classes and can be applied to many different fields, for

example, spam detection, credit card fraud detection, medicine,

finance, etc. Classification can be based on simple rules made

by hand, or the classification function can be learned from a

set of manually labeled data using machine learning methods.

In this paper, classification based on machine learning for the

detection of malware in Android applications was used.

C. Android Malware Dataset

The dataset used for training and evaluating the machine

learning model used in this paper, is the Drebin-215 [14]

dataset, which consists of 215 features and has 15 036

samples. 9476 of these are benign samples, while the other

5560 are malware samples from the Drebin project [1]. The

features consist of API call signatures, Intents, and Manifest

Permissions, which are extracted using static code analysis.

II. RELATED WORK

Malware detection using machine learning is a hot topic,

and there has been a lot of other work on detecting malware

in Android applications using machine learning methods (both

supervised and unsupervised). There are papers published

about detecting malicious software using machine learning in

computers [8], iOS devices [2], and even detecting malicious

websites using natural language processing [4]. In the context

of Android Malware Detection, on which our research focuses,

researchers have been able to develop an explainable model

based on support vector machines achieving a recall of 0.94

[1], others have used a one-class support vector machine to

develop an anomaly detection model (which treats malware as

an anomaly), achieving high recall but low precision [11]. A

third group of researchers used a fusion of different models

to create a model with high precision and high recall [15].

Graph Convolutional Networks [7] have also been successfully

applied to the problem of detecting malware in Android

applications, as well as Convolutional Neural Networks [10]

achieving f1 scores of 0.986 and 0.97 respectively. A recently

published study [9] suggested treating Android malware de-

tection as a Bi-Level optimization problem where the upper-

level optimization task aims to generate a set of detection

rules, while the lower-level task, which is embedded in the

upper-level task, aims to generate artificial malicious patterns

which escape the rules of the upper-level. This method has

also successfully achieved a precision of 0.9806 and recall of

0.9834. The XGBoost model has also been used in another

The 20th International Conference on Informatics and Information Technologies - CIIT 2023

43



research dealing with Android malware detection, achieving

an accuracy of 0.946 [6].

III. MODEL

A. XGBoost

XGBoost stands for Extreme Gradient Boosting - it is a

gradient-boosting model based on ensembles of decision trees.

The term ”boosting” comes from the idea of boosting or

improving a single weak model by combining it with a number

of other weak models. XGBoost uses Gradient Descent over

an objective function to add new models to the ensemble. This

makes XGBoost more robust to overfitting and able to handle

large datasets [3].

B. Model Hyper-parameters

All of the hyper-parameters were left on their default values

except for the following:

• eta, which is used to prevent overfitting and is analogous

to a learning rate,

• max depth, which controls the maximum depth of each

tree added to the ensemble, and

• scale pos weight which controls the balance of positive

and negative weights.

IV. METHODOLOGY

A. Feature Selection

Three different sets of features were created for the purpose

of training the models. The first set was all of the features

(ALL), the second set was all the features that had high

correlation (below −0.4 or above 0.4) with the class label

(malware / benign) (CORR), and the third set of features were

those features that had high mutual information (greater than

0.1) with the class label (M-INF). For simplicity in reporting

the results, we shall refer to the models trained with the ALL,

CORR, and M-INF feature sets as the ALL, CORR, and M-

INF models, respectively.

B. Model Selection

For each set of features, a grid search on the parameters in

Table I was performed; this means models with each possible

combination of hyper-parameters from Table I were trained

and tested using repeated stratified k-fold cross-validation with

2 repeats and 5 folds. The metric used for cross-validation was

the f1 score, and the results of the best models for each feature

are given in the next section. The hyper-parameters of the best

models for each feature set are given in Table II. The value for

scale pos weight of 1.71 in Table I was considered because

this is the approximate ratio of benign to malware samples in

the dataset.

TABLE I
HYPER-PARAMETER GRID

eta 0.1 0.3

max depth 3 6

scale pos weight 1 1.71

TABLE II
CHOSEN HYPER-PARAMETERS

feature set eta max depth scale pos weight

ALL 0.3 6 1.71

CORR 0.3 6 1

M-INF 0.1 6 1.71

C. Training and Testing

Before any model and feature selection process began, the

dataset was split into two parts, 80% of the data was used

for model selection and training the selected model, while

the other 20% was used to test the model and estimate its

performance. The data sampling was stratified according to

the class label, meaning that the ratio of benign to malware

samples stayed the same in both the training and the testing

set.

V. RESULTS

A. Metrics

For the purposes of testing the models, classification reports

and confusion matrices were generated, also the precision-

recall curves of the models were visualized. The classification

reports contain the models’ precision, recall, and f1-score -

because of the nature of malware detection, accuracy wasn’t

considered since it just tells us how many of our predictions

were correct (and since there is more benign software than

malware, a model that doesn’t detect any malware could still

have high accuracy). Precision and recall are much more

important to consider since they tell us how much of the

malware detected was really malware and how much of the

present malware was detected, while the f1-score is calculated

as a combination of precision and recall. From the confusion

matrices, we can easily see if the model has a lot of false

positives or false negatives while from the precision-recall

curves, we can get a feel for the trade-off between the precision

and recall of the model. In the lower-left corners of the

precision- recall figures the average precision is also given

which is the weighted average of the precision for each level

of recall.

B. Classification Reports

From the classification report in Table III we can see that

the ALL Model has both very high precision and very high

recall for both malware and benign samples which means the

model could be useful in practice since it neither misses a lot

of the malware, nor does it misclassify a lot of the benign

software.

TABLE III
CLASSIFICATION REPORT FOR THE ALL MODEL

precision recall f1-score support

benign 0.99 0.99 0.99 1896

malware 0.98 0.99 0.98 1111

The CORR Model seems close behind the ALL Model

according to Table IV. It has lower precision and recall for

The 20th International Conference on Informatics and Information Technologies - CIIT 2023

44



malware samples, but nevertheless high enough that the model

could be useful. Also since the model has fewer features it

would require less time to process a given file.

TABLE IV
CLASSIFICATION REPORT FOR THE CORR MODEL

precision recall f1-score support

benign 0.94 0.96 0.95 1896

malware 0.93 0.90 0.91 1111

The M-INF Model has a low recall for the benign samples

and very low precision for the malware samples as can be seen

in Table V, and is overall the worst of the three models being

compared.

TABLE V
CLASSIFICATION REPORT FOR THE M-INF MODEL

precision recall f1-score support

benign 0.95 0.75 0.84 1896

malware 0.68 0.93 0.79 1111

C. Confusion Matrices

From Table VI we can see that the ALL Model missed only

15 of the malware samples and misclassified only 20 of the

benign samples, out of 1111 malware samples and 1896 benign

samples which only reinforces the notion that the model is

good and could be useful in practice - it has both little false

negatives and false positives.

TABLE VI
CONFUSION MATRIX FOR THE ALL MODEL

actual / predicted benign malware

benign 1876 20

malware 15 1096

As we can see in Table VII compared to the other two

models, the CORR Model missed most of the malware samples

but didn’t misclassify many of the benign samples, which is

also important to consider. The fact that the model doesn’t

misclassify a lot of the benign samples, and only misses about

9.9% of the malware samples, only reinforces the notion that

it might be useful in some scenarios in practice.

TABLE VII
CONFUSION MATRIX FOR THE CORR MODEL

actual / predicted benign malware

benign 1820 76

malware 110 1001

Table VIII shows us that even tho the M-INF Model misses

less of the malware files than the CORR Model, it misclassifies

almost one-quarter of the benign files making the model very

unusable in practice since we don’t want benign files being

deleted for no reason (or at the very least scaring users).

TABLE VIII
CONFUSION MATRIX FOR THE M-INF MODEL

actual / predicted benign malware

benign 1421 475

malware 79 1032

D. Precision-Recall Curves

Figure 1 shows that the ALL Model has an excellent

precision-recall curve - there aren’t many trade-offs between

the two values and the average precision of the model is 1

(lower left of Figure 1) which is quite outstanding.

Fig. 1. Precision-recall curve of the ALL Model

The CORR Model has a bigger trade-off between precision

and recall, as shown in Figure 2, but still good enough to be

useful (the model has an average precision of 0.96) - this,

combined with the fact that the model should require fewer

computing resources, would mean the model could be useful

on older hardware.

Fig. 2. Precision-recall curve of the CORR Model

From Figure 3, we can see that the M-INF Model has a high

trade-off between precision and recall and the lowest average

precision of all the models; this serves to reinforce the fact

that this model would have almost no practical use.

The 20th International Conference on Informatics and Information Technologies - CIIT 2023

45



Fig. 3. Precision-recall curve of the M-INF Model

VI. FUTURE WORK

Possible next steps from this research include integrating the

ALL Model or CORR Model in a mobile (or even desktop or

web) application that can scan Android applications, trying

to build an explainable model by using Shapley values to

rank each feature’s contribution (knowing why the model

predicts something as benign or malware could be valuable

information) which could also be integrated into a mobile

(desktop or web) application, retraining and reevaluating the

model on more recent data, and also trying to build an

unsupervised model that could more easily be trained and

retrained (since there is no need for manual labeling of the

data). Another direction to go in form here would be adding

more features (which would hopefully add more information

and improve the models performance even further) and using

dimensionality reduction techniques like PCA to reduce the

vector space of the dataset with the goal of not sacrificing

performance and training speed.

VII. CONCLUSION

Because of the fast-changing nature and growing complexity

of malware, the amount of sensitive information kept on

Android devices, and the inefficacy of conventional antivirus

programs, other ways of securing Android devices are needed.

The main advantage machine learning methods have over

traditional detection of malware is that they can detect zero-

day attacks since they aren’t based on signatures (they need

not have seen the malware before to be able to detect it). In

this research, we have compared several different models for

malware detection in Android applications and developed a

model that can efficiently detect malware while also keeping

the number of false positives relatively low - which is a very

desirable quality of a malware detection system since we do

not want to remove benign files needlessly. And although our

model, or any machine learning model for that matter, cannot

provide a 100% malware detection rate while keeping the

false positives at 0%, we believe that machine learning might

provide our best bet in defending against the ever-growing

threat of rapidly evolving malware.

REFERENCES

[1] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon,
Konrad Rieck, and CERT Siemens. Drebin: Effective and explainable
detection of android malware in your pocket. In Ndss, volume 14, pages
23–26, 2014.

[2] Arpita Jadhav Bhatt and Neetu Sardana. Malicious ios apps detection
through multi-criteria decision-making approach. 2022.

[3] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting
system. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’16, pages
785–794. ACM, 2016.

[4] Jovana Dobreva, Aleksandra Popovska Mitrovikj, and Vesna Dimitrova.
Maldewe: New malware website detector model based on natural
language processing using balanced dataset. In 2021 International

Conference on Computational Science and Computational Intelligence

(CSCI), pages 766–770. IEEE, 2021.
[5] Ken Dunham. Mobile malware attacks and defense. Syngress, 2008.
[6] Qi Fang, Xiaohui Yang, and Ce Ji. A hybrid detection method for an-

droid malware. In 2019 IEEE 3rd Information Technology, Networking,

Electronic and Automation Control Conference (ITNEC), pages 2127–
2132, 2019.

[7] Han Gao, Shaoyin Cheng, and Weiming Zhang. Gdroid: Android
malware detection and classification with graph convolutional network.
Computers & Security, 106:102264, 2021.

[8] Dragoş Gavriluţ, Mihai Cimpoeşu, Dan Anton, and Liviu Ciortuz.
Malware detection using machine learning. In 2009 International

Multiconference on Computer Science and Information Technology,
pages 735–741. IEEE, 2009.

[9] Manel Jerbi, Zaineb Chelly Dagdia, Slim Bechikh, and Lamjed Ben
Said. Android malware detection as a bi-level problem. Computers &

Security, 121:102825, 2022.
[10] Niall McLaughlin, Jesus Martinez del Rincon, BooJoong Kang,

Suleiman Yerima, Paul Miller, Sakir Sezer, Yeganeh Safaei, Erik Trickel,
Ziming Zhao, Adam Doupé, et al. Deep android malware detection. In
Proceedings of the seventh ACM on conference on data and application

security and privacy, pages 301–308, 2017.
[11] Justin Sahs and Latifur Khan. A machine learning approach to

android malware detection. In 2012 European Intelligence and Security

Informatics Conference, pages 141–147. IEEE, 2012.
[12] Guillermo Suarez-Tangil, Juan E Tapiador, Pedro Peris-Lopez, and

Arturo Ribagorda. Evolution, detection and analysis of malware for
smart devices. IEEE Communications Surveys & Tutorials, 16(2):961–
987, 2013.

[13] Fei Xiao, Yi Sun, Donggao Du, Xuelei Li, and Min Luo. A novel
malware classification method based on crucial behavior. Mathematical

Problems in Engineering, 2020, 2020.
[14] Suleiman Yerima. Android malware dataset for machine learning 2.

https://figshare.com/articles/dataset/Android malware dataset

for machine learning 2/5854653, 2018.
[15] Suleiman Y Yerima and Sakir Sezer. Droidfusion: A novel multilevel

classifier fusion approach for android malware detection. IEEE trans-

actions on cybernetics, 49(2):453–466, 2018.

The 20th International Conference on Informatics and Information Technologies - CIIT 2023

46


