Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/26832
Наслов: Proportional Caputo Fractional Differential Inclusions in Banach Spaces
Authors: A. Rahmani, W-S. Du, M. T. Khalladi, M. Kostic, D. Velinov
Keywords: fractional differential equations; proportional fractional integrals; proportional Caputo fractional derivatives; abstract Volterra integro-differential inclusions; almost periodic-type functions
Issue Date: 18-сеп-2022
Publisher: MDPI
Abstract: In this work, we introduce the notion of a (weak) proportional Caputo fractional derivative of order a 2 (0, 1) for a continuous (locally integrable) function u : [0,¥) ! E, where E is a complex Banach space. In our definition, we do not require that the function u( ) is continuously differentiable, which enables us to consider the wellposedness of the corresponding fractional relaxation problems in a much better theoretical way. More precisely, we systematically investigate several new classes of (degenerate) fractional solution operator families connected with the use of this type of fractional derivatives, obeying the multivalued linear approach to the abstract Volterra integro-differential inclusions. The quasi-periodic properties of the proportional fractional integrals as well as the existence and uniqueness of almost periodic-type solutions for various classes of proportional Caputo fractional differential inclusions in Banach spaces are also considered.
URI: http://hdl.handle.net/20.500.12188/26832
DOI: https://doi.org/10.3390/ sym14091941
Appears in Collections:Faculty of Civil Engineering: Journal Articles

Прикажи целосна запис

Page view(s)

57
checked on 6.11.2024

Google ScholarTM

Проверете

Altmetric


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.