Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/25705
DC FieldValueLanguage
dc.contributor.authorRistovski, Kristijanen_US
dc.contributor.authorZdraveski, Vladimiren_US
dc.date.accessioned2023-02-13T13:34:06Z-
dc.date.available2023-02-13T13:34:06Z-
dc.date.issued2022-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/25705-
dc.description.abstractThe amount of data has been exponentially rising over the years and data centers have invested heavily in research for solutions to efficiently transport and store the data. One of the fields that is crucial to solving this problem is compression of the generated data to reduce the amount of hardware needed for storage of said data. Multiple solutions have already been explored and proposed, and in this paper we experiment with GPU parallelization of compression algorithms to reduce the time required to compress data while maintaining the maximal possible compression ratio. The experiments in this paper explore the viability of using general purpose GPUs for accelerating at home data compression, with the possibility of scaling up to large data centers i.e. using GPU parallelization to reduce compression times.en_US
dc.subjectGPU, CUDA, Parallelization, Compressionen_US
dc.titleAccelerating data compression using general purpose GPUsen_US
dc.typeProceedingsen_US
dc.relation.conferenceThe 19th International Conference on Informatics and Information Technologies – CIIT 2022en_US
item.grantfulltextopen-
item.fulltextWith Fulltext-
crisitem.author.deptFaculty of Computer Science and Engineering-
Appears in Collections:Faculty of Computer Science and Engineering: Conference papers
Files in This Item:
File Опис SizeFormat 
CIIT_2022_29.pdf311.87 kBAdobe PDFView/Open
Прикажи едноставен запис

Page view(s)

105
checked on 11.11.2024

Download(s)

61
checked on 11.11.2024

Google ScholarTM

Проверете


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.