
Accelerating data compression using
general purpose GPUs

Kristijan Ristovski
Ss. Cyril and Methodius University

Faculty of Computer Science and Engineering
Skopje, North Macedonia

kristijan.ristovski.1@students.finki.ukim.mk

Vladimir Zdraveski
Ss. Cyril and Methodius University

Faculty of Computer Science and Engineering
Skopje, North Macedonia

vladimir.zdraveski@finki.ukim.mk

Abstract—The amount of data has been exponentially rising

over the years and data centers have invested heavily in research

for solutions to efficiently transport and store the data. One of

the fields that is crucial to solving this problem is compression

of the generated data to reduce the amount of hardware

needed for storage of said data. Multiple solutions have already

been explored and proposed, and in this paper we experiment

with GPU parallelization of compression algorithms to reduce

the time required to compress data while maintaining the

maximal possible compression ratio. The experiments in this

paper explore the viability of using general purpose GPUs for

accelerating at home data compression, with the possibility of

scaling up to large data centers i.e. using GPU parallelization

to reduce compression times.

Index Terms—GPU, CUDA, Parallelization, Compression

I. INTRODUCTION

Data compression has been around for a long time and
is a widely researched topic for many years. It’s a crucial
part of data storage and transfer, especially in systems that
utilize large amounts of data transmission. We divide data
compression into lossy and lossless approaches. Audio and
image data can tolerate some data loss and therefore can
utilize lossy compression, but more sensitive data, such as
scientific calculations or private user data, cannot tolerate
losses during compression.

II. RELATED WORK

Previous research in the field of lossless compression
proposed the use of GPU based lossless compression for
specific types of data. Fang et al. found that Run-Length
encoding based compression yields a significant increase in
performance for compressing databases [1], while O’Niel et
al. suggested the GFC algorithm that’s specifically targeted
towards double-precision floating point data [2].

Balevic also worked on RLE using GPUs, but only got in-
crease in performance compared to the serial implementation
on the CPU [3]. The parallel algorithm for variable-length
encoding used atomic operations and the shared memory for
computing codeword offsets in a compressed data stream and
cached the codeword in a look-up table in the low latency
memory.

Huffman encoding has also been studied by Cloud et al.
and showing that GPUs cannot significantly impact perfor-
mance using the Huffman algorithm because of the algo-
rithms deficiencies [4]. It’s proposed that form optimal use of
the GPUs SMID cores requires the complete elimination of if
statements from the GPU sub-routine. Rahmani et al. presents
an algorithm that managed to get a pretty sizable performance
increase by parallel implementation of the Huffman algorithm
by bypassing the constraints of the maximum codeword

length and entropy [5]. With the amount of new research
being conducted every day and with technology always im-
proving, resulting data from studies can be extremely precise
and can only be represented by the floating-point data type.
Ratanaworabhan et al. compare a number of compression
algorithms for scientific floating-point data and conclude
that real-time compression and decompression is possible on
modern hardware [6].

Works in the lossless family of algorithms, such as Lempel-
Ziv family of lossless compression algorithms, suggest that its
variations can benefit from parralelisation, as shown in Zu and
Hua’s work where they improve the LZSS algorithm by using
their own approach called GLZSS and managed to get double
speedup over the existing LZSS algorithm [7]. Concerning the
efficiency of these algorithms there are works showing that
efficiency is improved using multiple processors, as seen in
Erdodi’s paper where he implements the LZO algorithm using
a CUDA enabled GPU which exploits the number of cores
of the GPU and exceeds the CPUs efficiency when using the
same algorithm [8].

As previously stated, multimedia like pictures, audio and
video, is a data type that can tolerate some data loss. Utilising
the weakness of some of the human senses and the human
ability to fill in gaps given a context, lossy data can afford to
be highly compressed, even at the cost of losing some of the
nonessential data bits. For this type of data compression Patel
et al. find that performance can be gained when using GPUs
for lossy compression when algorithms are written with data
level parallelism in mind [9].

There have been instances where algorithms intended for
compressing lossless data have been used to compress lossy
data. Funasaka et al. implement the LZW (Lempel-Ziv-
Welch) compression algorithm to show that compressing
TIFF images using a GPU yield much better performance
compared to using the same algorithm on a CPU [10].

We also have data that can be compressed using both
methodologies, and has pros and cons in each one. For exam-
ple we have Franklin et al. that propose the HD-ODETLAP
algorithm for lossy compression on high-dimensional arrays
of data which tackle a pretty significant problem, compressing
GIS (Geographic Information System) data [11]. GIS data
can be highly compressed at the expense of reconstruction
accuracy or be compressed using a lossless algorithm and
maintain full accuracy.

III. SOLUTION ARCHITECTURE

In this paper we will be comparing the execution times
of three different compression algorithms on different pro-
cessing units i.e. on the CPU, where we will be running the

144

The 19th International Conference on Informatics and Information Technologies – CIIT 2022



algorithm in sequential mode, and on the GPU, where we will
be running the algorithm in parallel mode. Figure 1 presents
a general overview of both of these scenarios.

Fig. 1. Scenarios A and B

Suppose we have a large data set comprised of different
types of data (audio, video, image or text data) stored in
system storage (HDD or SSD). If we are running any of
the compression algorithms on a file from the data set using
Scenario A, the file first has to be loaded from the system
storage to the main memory i.e. the RAM. After the file
is put into RAM, the CPU reads it line by line and passes
it through the compression algorithm which compresses the
data according to the specified compression algorithm and
loads the compressed file into RAM, then the resulting file
is written to the system storage for the user to access.

Using Scenario B we attempt to improve upon scenario
A by using the GPU as the processor for the compression
algorithm to utilise to improve compression times. The pro-
cess starts similarly as scenario A i.e. the desired file is
loaded from system storage to RAM where the CPU can send
the file using PCIe connections to the GPU. The GPU then
runs the received data through the compression algorithm and
generates a compressed file which is sent back to the RAM
and written to the system storage.

Fig. 2. GPU thread assignment

In Figure 2 we observe, in detail, the way that GPU
assigns work to its multiprocessors. The desired file is loaded

into RAM and gets copied to the GPUs input buffer where
the work is split into threads. The individual threads and
are assigned a GPU processing core which executes the
compression algorithm and sends the result to the output
buffer which collects all of the individual outputs and sends
them to the RAM where the compressed file is temporarily
stored before it gets permanently stored in the system storage.

In both of these scenarios we evaluate the time it takes
to get a compressed file from the moment the command
is executed using the Measure-command in the Windows
terminal (equivalent to time in UNIX based systems) and the
compression ratio of each file. All of the tests will be run on
the same machine with an AMD Ryzen 5 3600 CPU with
6 cores and SMT (Simultaneous Multi-Threading) enabled,
an Nvidia GTX 750Ti with 2GB of memory and 640 CUDA
cores, a HDD which spins at 7200RPM and 16GB of RAM.

The compression algorithms which we will be using for
these benchmarks are:

• BZip2, an open-source program that uses the Burrows-
Wheeler algorithm, Run-length encoding, Huffman cod-
ing and Delta encoding to compress a desired file.
It’s much more efficient than traditional compression
algorithms but it’s noticeably slower.

• LZMA aka the Lempel–Ziv–Markov chain algorithm
is mainly used for lossless data compression that uses
a dictionary compression algorithm whose output is
encoded with a range encoder utilising a complex model
to make a probability prediction for each bit. This
algorithm is also noticeably slower that traditional al-
gorithms, but can compress much larger data inputs and
is also characterised with a fast decompression time.

• PPMd i.e. the Prediction by Partial Matching algorithm,
is an algorithm that chooses how to compress the data
further in the receiving stream by comparing it with the
data it has most recently encountered. This algorithm is
also lossless and is effective at compressing text files
that contain natural language text but at the cost of a
relatively large amount of RAM consumption because
of the needs of the prediction model.

The data set on which we will be running the test consists
of a large text file that contains generated Lorem-ipsum text,
an image with the RAW format and a regular JPEG image.

IV. RESULTS

In this section we evaluate how quickly the files are
compressed on our machine using different compression
algorithms and see which compression algorithm and/or file
type benefits the most from GPU acceleration.

As previously mentioned, our data set consists of a large
text file with a size of 953 MB, an image with the RAW file
format which has a size of 27.2 MB i.e a large uncompressed
image that contains all of the data captured by the DLSR
camera and an uncompressed BMP image with a size of 116
KB. All of the tests are repeated 4 times and an average time
is calculated.

Figure 3 illustrates the time needed to compress the large
text file. As we can see from the graph all of the algorithms
execute faster when running GPU acceleration, but the time
delta is minimal in most cases. The LZMA algorithm benefits
the most from GPU acceleration which reduces execution
time by 27.2 seconds but is slowest out of the three by
quite some margin and reduces the file size to 203 MB. The

145

The 19th International Conference on Informatics and Information Technologies – CIIT 2022



Fig. 3. Execution time of text compression

BZIP2 algorithm has the fastest execution time but also has
the worst compression, only managing to reduce file size
to 242 MB and the resulting file is 42MB larger than the
most compressed file, i.e the resulting file from the PPMD
algorithm with a resulting file size of 200 MB, but has the
lowest benefit from GPU acceleration. The PPMD algorithm
speeds up by 9.3 seconds when using the GPU and is the best
out of the three algorithms when compressing textual data.

Fig. 4. Execution time of RAW image compression

In the graph in Figure 4 we observe negligible speedup
when using the GPU and in the table we can see that all of
the algorithms achieve the same amount of compression. This
type of data i.e RAW images, is minimally compressible due
to the nature of the contained data and results in all of the
algorithms having the same compression result of 26.3MB.
The purpose of these files is to edit the image without losing
any crucial data like colour, ISO etc., so compressing the
file RAW only compresses the overhead and metadata in the
picture which results in minimal overall compression.

Fig. 5. Execution time of BMP image compression

Figure 5 illustrates the execution time of the compression
of a BMP image. The very short execution times are a

result of the overall small file size of the image and the fact
that BMP images are highly compressible. The compression
algorithms all gain from the GPU acceleration but it’s very
negligible, but the compressed file sizes are half of the
original file size. The LZMA algorithm achieves the best
compression with a resulting file size of 69.2 MB, while
the PPMD algorithm achieves the worst compression with a
resulting file size of 77.2 MB and BZip2 algorithm generates
a file size of 74.8 MB, which shows that the PPMD algorithm
is better optimized for compressing textual data.

Fig. 6. Resulting compression ratios by file type

Figure 6 depicts the compression ratios of all of the files
from the testing data set. We can see that the text data
sample and the RAW image have a constant compression ratio
that isn’t affected neither by the algorithm nor whether the
GPU is used or not. The only difference in the compression
ratio is observed in the BMP image compression and it only
differs based on the algorithm used, not the hardware used
to compress the file.

V. CONCLUSION

In this paper, we compared the execution times and the
compression ratios of different file types using three different
compression algorithms and executing those algorithms on
two different processing units, the CPU and the GPU. We
observed a small speedup in execution when running the
algorithms on the GPU versus running the same algorithms
on the CPU, showing that some algorithms and file types
benefit from running on parallel processors. This speedup
is almost negligible in most user cases and doesn’t make it
viable in a personal working scenario, but may prove useful
in professional work when compressing very large data sets,
like user data bases or data resulting from a large experiment,
which take a very long time to complete.

The results from our experiments confirm the results from
already existing work i.e. it is possible to accelerate the
execution process of compression algorithms when running
them on parallel processors.

REFERENCES

[1] W. Fang, B. He, and Q. Luo, “Database compression on graphics
processors,” Proceedings of the VLDB Endowment, vol. 3, no. 1-2,
pp. 670–680, 2010

[2] M. A. O’Neil and M. Burtscher, “Floating-point data compression at
75 gb/s on a gpu,” in Proceedings of the Fourth Workshop on General
Purpose Processing on Graphics Processing Units, 2011, pp. 1–7.

[3] A. Balevic, “Parallel variable-length encoding on gpgpus,” in European
Conference on Parallel Processing. Springer, 2009, pp. 26–35.

[4] R. L. Cloud, M. L. Curry, H. L. Ward, A. Skjellum, and P. Bangalore,
“Accelerating lossless data compression with gpus,” arXiv preprint
arXiv:1107.1525, 2011.

146

The 19th International Conference on Informatics and Information Technologies – CIIT 2022



[5] H. Rahmani, C. Topal, and C. Akinlar, “A parallel huffman coder on the
cuda architecture,” in 2014 IEEE Visual Communications and Image
Processing Conference. IEEE, 2014, pp. 311–314.

[6] P. Ratanaworabhan, J. Ke, and M. Burtscher, “Fast lossless compression
of scientific floating-point data,” in Data Compression Conference
(DCC’06). IEEE, 2006, pp. 133–142.

[7] Y. Zu and B. Hua, “Glzss: Lzss lossless data compression can be
faster,” in Proceedings of Workshop on General Purpose Processing
Using GPUs, 2014, pp. 46–53

[8] L. Erdodi, “File compression with lzo algorithm using nvidia cuda
architecture,” in 2012 4th IEEE International Symposium on Logistics
and Industrial Informatics. IEEE, 2012, pp.251–254.

[9] P. Patel, J. Wong, M. Tatikonda, and J. Marczewski, “Jpeg compression
algorithm using cuda,” Department of Computer Engineering, Univer-
sity of Toronto, Course Project for ECE, vol. 1724, 2009

[10] S. Funasaka, K. Nakano, and Y. Ito, “Fast lzw compression using
a gpu,” in 2015 Third International Symposium on Computing and
Networking (CANDAR). IEEE, 2015, pp. 303–308.

[11] W. R. Franklin, Y. Li, T.-Y. Lau, and P. Fox, “Cuda-accelerated
hd-odetlap: lossy high dimensional gridded data compression,” in
Modern Accelerator Technologies for Geographic Information Science.
Springer, 2013, pp. 95–111

147

The 19th International Conference on Informatics and Information Technologies – CIIT 2022


