Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/24995
DC FieldValueLanguage
dc.contributor.authorKuzmanov, Ivanen_US
dc.contributor.authorVasilevska, Anastasijaen_US
dc.contributor.authorMadevska Bogdanova, Anaen_US
dc.contributor.authorAckovska, Nevenaen_US
dc.contributor.authorKostoska, Magdalenaen_US
dc.contributor.authorLehocki, Fedoren_US
dc.date.accessioned2022-12-19T10:39:26Z-
dc.date.available2022-12-19T10:39:26Z-
dc.date.issued2022-09-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/24995-
dc.description.abstractBlood pressure (BP) estimation can aid the triage process and help prioritizing and helping injured, especially in a situation of multiple casualties. The presented research aims to create a model for BP class estimation using electrocardiogram (ECG) and photoplethysmogram (PPG) waveforms. We focus on developing a BP classification model as a convolutional neural network (CNN) - gated recurrent unit (LSTM) hybrid model, containing both CNN and LSTM layers. The used dataset is the publicly available UCI Machine Learning Repository dataset. We have achieved stable AUCROC for each class - 0.89, 0.83, and 0.89 respectively and overall accuracy of 83%.en_US
dc.subjectelectrocardiogram · photoplethysmogram · blood pressure estimation · triage · LSTM · artificial neural network · deep learning · CNN-LSTM hybrid modelen_US
dc.titleBlood pressure classification using CNN-LSTM modelen_US
dc.typeProceedingsen_US
dc.relation.conferenceICT Innovations 2022en_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.author.deptFaculty of Computer Science and Engineering-
crisitem.author.deptFaculty of Computer Science and Engineering-
Appears in Collections:Faculty of Computer Science and Engineering: Conference papers
Files in This Item:
File Опис SizeFormat 
blood-pressure-classification-using-cnn-lstm-model.pdf388.97 kBAdobe PDFView/Open
Прикажи едноставен запис

Page view(s)

107
checked on 4.5.2025

Download(s)

61
checked on 4.5.2025

Google ScholarTM

Проверете


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.