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Abstract. Blood pressure (BP) estimation can aid the triage process
and help prioritizing and helping injured, especially in a situation of
multiple casualties. The presented research aims to create a model for
BP class estimation using electrocardiogram (ECG) and photoplethys-
mogram (PPG) waveforms. We focus on developing a BP classification
model as a convolutional neural network (CNN) - gated recurrent unit
(LSTM) hybrid model, containing both CNN and LSTM layers. The
used dataset is the publicly available UCI Machine Learning Repository
dataset. We have achieved stable AUCROC for each class - 0.89, 0.83,
and 0.89 respectively and overall accuracy of 83%.

Keywords: electrocardiogram · photoplethysmogram · blood pressure
estimation · triage · LSTM · artificial neural network · deep learning ·
CNN-LSTM hybrid model.

1 Introduction

The humankind faces threats from all sorts of agents: viruses, natural disasters
etc. Not only the COVID-19 pandemic, but also many terrorist threats, wars,
hurricanes, earthquakes, droughts in the last decade have made huge impact in
nearly all aspects of human lives. This created pressure for finding new effective
solutions for use in healthcare, especially among the first responders, personal-
ized therapies, medicament distribution, as well as in the economy, transporta-
tion, education, culture, and many other aspects of our lives. Many solutions
are offered to assist all of these domains in the new era, shaping the new nor-
mal. Among the solutions that are getting a lot of attention are the affordable
solutions for the first responders on sites where many victims appear - mass
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disasters or war conflicts with many casualties. In those situations the first re-
sponders need to have effective systems to easily recognize the severity of the
person’s injuries.

Blood pressure (BP) is an important metric to determine a patient’s hemody-
namic stability. While primary triage (ex. START) does not include blood pres-
sure in the decision making process, this metric is important in the secondary
triage, in order to follow the health status of the injured, whether internal bleed-
ing has occurred. Blood pressure is usually measured noninvasively by using a
cuff-based measuring device or invasively, in a specialized hospital setting. Using
the first method (cuff-based), the values are obtained on demand or in regular
intervals thus are non-continuous. The second method requires specific condi-
tions, equipment and highly-trained staff. Furthermore in case of mass casualty
event it may not be possible to repeatedly measure blood pressure with both of
the methods.

The goal of our research is to estimate the BP in real-time given the embed-
ded electrocardiogram (ECG) and photoplethysmogram (PPG) signals’ values.
ECG signals represent the electrical activity of the heart, while PPG manifests
the changes of blood volume in the microvascular tissue. The ECG and PPG
values will be obtained by using patch-like combined multi-sensor attached to a
human’s chest. Both signals are given in a time series. The patch-like sensor will
obtain basic signals and vital parameters necessary for triage process [14]. The
correlation among BP, ECG and PPG has been researched in other studies [15]
[9] [5] [18].

Recurrent neural networks are a type of neural networks that specialize in
processing sequential information that are specifically built to be able to follow
long-term dependencies. This type of networks are typically slow and difficult to
train. Because of the problem’s nature, the classification needs to be a continuous
process. To further increase the efficiency of the model it’s combined with a CNN
layer which essentially performs feature selection. The model our paper proposes
is a CNN-LSTM neural network.

The rest of the paper is organized as follows. In section 2 is presented an
overview on similar papers or related researches. Section 3 describes the used
methodology. The results of the experiments and the discussion are presented in
Section 4, including the introduction of the dataset, the preprocessing part and
the used methods. The conclusion is presented in Section 5.

2 Related Work

Noninvasive and continuous blood pressure monitoring is a popular research
subject because of the prevalence of hypertension and recent wide availability
of low cost sensors. The correlation among blood pressure, ECG and PPG has
been explored in other works. Most of the studies follow the standards outlined
by The Association for the Advancement of Medical Instrumentation (AAMI)
and British Hypertension Society (BHS) [12].
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The most common method of cuffless blood pressure estimation is by using
some manually extracted features from the raw signals such as pulse wave veloc-
ity (PWV), pulse transit time (PTT) and pulse arrival time (PAT). PWV is a
measure of arterial stiffness and is estimated from PTT since pulse transit time
is an indirect indicator of blood pressure. It is the time interval required for the
heartbeat to reach the periphery of the body. ECG represents the electrical ac-
tivity of the heart, while PPG is often measured by oscillometer attached on the
fingertip and it shows the changes of blood volume measured in the microvas-
cular tissue. PAT is a feature that is simpler to measure, however it isn’t an
adequate substitute for PTT [22]. These features are typically accompanied by
others depending on the type of the study. Some focus on the signals complexity
[19] based on the theory that loss of complexity is a sign of an abnormality.
Another useful feature is pulse intensity ratio (PIR) [6]. This feature estimates
the arterial diameter and its correlation with blood pressure has been shown [3].

While the dependency between the above-mentioned features and blood pres-
sure has been proven in numerous studies [7][18], one of the main challenges of
blood pressure estimation are the patient specific morphological contours. These
differences are a result of the patient specific characteristics that influence their
cardiovascular systems, which are caused by diseases, medication, lifestyle, inter-
action with other systems etc. Calibration could be used to attempt to overcome
this problem, however this is not always possible, since frequent calibration would
be necessary to allow for continuous and long-term estimations [12].

Some studies suggest a deep learning approach where typically the lower
layers of the deep learning models are used for feature extraction. This study
[20] uses an ANN-LSTM type of model and achieves MAE of 1.10 mmHg for
SBP and 0.58 mmHg for DBP and RMSE of 1.56 mmHg for SBP and 0.85
mmHg. These approaches are more computationally expensive. However, they
are free of the human bias that can happen during manual feature extraction.
The features with the most information gain, PTT and PAT, can be found in
the differences between the ECG and PPG signals. There is a study that focuses
on this aspect and uses the difference in the signals as an input in a CNN-LSTM
neural network. This study [10] achieves the predictive accuracies of 0.0 ± 1.6
mmHg and 0.2 ± 1.3 mmHg for SBP and DBP, respectively. It should be noted
that this attempt requires synchronisation of the signals [16].

Another study [17] similar to ours in the sense that it focuses on classification,
achieves f1 scores for normotension versus prehypertension of 84.34%, the scores
for normotension versus hypertension of 94.84%, and the scores for normotension
plus prehypertension versus hypertension of 88.49%. The best results of the
study were achieved with the dataset containing both PAT and PPG features in
addition to the features extracted by the ECG.

3 Materials and Methods

In this section we describe the dataset, data preprocessing procedures, the de-
veloped CNN-LSTM model and the used evaluation metrics.
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3.1 Dataset

In this study we use the ”Cuff-Less Blood Pressure Estimation Data Set”, pub-
lished in the UCI Machine Learning Repository [11]. This dataset consists of
12000 instances, each having three recorded signals of variable length. The sig-
nals correspond to PPG, ABP, and ECG recorded with a 125 Hz frequency.
There is no other information in the dataset, nor patient identifiers, so it’s im-
possible to identify whether two separate instance are signals from the same
patient.

Important characteristics For the purpose of our research, several important
signals and measurements are used. We shortly give their description here.

Photoplethysmograph, PPG, measures the blood volume changes in mi-
crovascular tissue by detecting changes of light absorption on the skin. It’s a
low-cost technology that has gotten prominence in the medical field in recent
years because of its usability in understanding the cardiovascular system [9].
Visualisation of a PPG is given in Figure 1.

Fig. 1. Visualization of a PPG waveform

Arterial blood pressure, ABP, is a waveform representing blood pressure
measured from within an artery. Measurements of this kind can only be taken
in a hospital setting. Blood pressure is the pressure created in the blood vessels
of a cardiovascular system as the heart pumps the blood. The positive peaks
of the waveform represent the moment when the heart contracts and the blood
pressure is at its highest and the negative peaks represent the moment when
the heart relaxes after a contraction and the blood pressure is at its lowest. The
blood pressure in these moments are known as the systolic blood pressure, SBP,
and dyastolic blood pressure, DBP. Visualisation of an ABP waveform is shown
in Figure 2.
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Fig. 2. Visualization of an ABP waveform

Electrocardiogram, ECG, measures the heart’s electrical activity, never-
theless no electricity is sent to the body. It only tracks the polarization wave
caused by the heart as it beats. The ECG in this study is a 1-channel one. With
each beat, the electrical impulses coordinate the heart’s contraction. An ECG
simply records these impulses as they move through different parts of the heart.
Visualisation of an 8 second electrocardiogram is presented in Figure 3.

Fig. 3. Visualization of an ECG waveform
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3.2 Preprocessing

Signal Selection The used dataset contains signals with varying quality. The
decision whether an ABP signal is usable is made by the following criteria: if
the difference between the SBP and DBP, the pulse pressure, is larger than
twenty and less than eighty units, than the signal is valid. We recognize that
this limits the model building process. However, we believe it’s necessary be-
cause of sustaining the signal quality. Abnormal values may be caused by sensor
malfunction.

The consistency of the ECG and PPG signals is checked by calculating the
beat-to-beat interval ratio and the peak ratio. If any of these values are larger
than 1.5, the signal is invalid.

Data Segmentation The signals per patient in the dataset are with variable
length, within the range [1000, 74000] data points. The signals are recorded with
frequency of 125 Hz, concluding that the shortest signal length in the dataset is
8 seconds and the longest - 9.9 minutes long.

Different studies suggest and work with segments of different length, usually
within the range of 5-30 seconds [21][19]. In this study it is decided to use 8 sec-
onds (8s) segment length. This decision was influenced by the aforementioned
fact that the shortest signal has a length of 8 seconds and if we were to work
with longer signal per instance, we would have had to exclude the shorter sig-
nals, reducing the already small dataset. Multiple segments are taken from the
longer signals to further increase the number of samples. The segments are taken
sequentially with no overlap. The decision to use this type of segmentation was
influenced by a similar study[2], where the same approach was used. It should
be noted that by taking multiple samples from the same patient we introduce
bias due to the patients specific morphological contours. However this approach
was deemed as necessary since this dataset is quite limited.

Normalization The PPG and ECG signals are normalized by scaling the values
into decimals between 0 and 1, with 0 being the minimum value of the signal
and 1 being the maximum. Normalizing the data before training the models is a
common practice and generally leads to better convergence in the machine and
deep learning models.

Filtering Noise is a common problem with a sensor utilization. It can appear
within a signal for a variety of reasons - noise caused by the electrical activity
of the muscles, breathing, loss of contact with the skin, etc. Often, the noise has
the same frequency as the signal and thus it’s difficult to completely remove it
without distorting the signal.

Filtering is the process of removing unwanted components from the signal.
For the filtering of biological signals the most commonly used filters are notch
and bandwidth filters. The decision to use these type of filters was made based on
the results presented in previous works in this field which show that bandwidth
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filters are suitable for both PPG and ECG[20]. However, the PPG is filtered by
a filter of the fourth order and the ECG by a filter of the fifth order.

BP categorization For the purposes of this study it’s necessary to transform
the ABP waveform into 2 scalars, SBP and DBP, used for the blood pressure
categorisation. In order to avoid possible outliers, it is decided that instead of
taking the min and max value in the segment, it’s better to calculate the average
of the local extremes, maxima for SBP and minima for DBP[1].

The European Society of Hypertension and the American College of Cardi-
ology have different classifications schemes for blood pressure categorization. In
this study the second (ACC) scheme is used. Following the scheme there are four
blood pressure categories: Normal, Elevated, Stage 1 hypertension and Stage 2
hypertension [4]. Since the dataset is small and the Hypertension classes are
underrepresented, it is decided to merge them into a single class, since it does
not interfere with the second triage process in the emergency situations. The
elevated blood pressure class in this study is referred to as Prehypertension. In
Table 1 the conditions for division per class are shown, as well as, the number
of samples per class.

Table 1. Blood Pressure Categorization

Category SBP DBP Number of Samples

Normal < 120 < 80 118644

Prehypertension 120− 139 80− 89 102927

Hypertension ≥ 140 ≥ 90 49948

Fig. 4. Class imbalance
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As shown in Figure 4, there is a class imbalance in the used dataset. The
results of models trained on an imbalanced dataset often favor the more com-
mon classes. Many solutions have been developed to counteract this problem.
The most common and widely used are oversampling of the minority classes
and undersampling of the majority classes. The most popular type of oversam-
pling, SMOTE is not applicable to this problem, since the input vectors are
time dependant sequences. Undersampling methods were also considered. These
methods are useful in some specific cases, but usually achieve lower classification
performance because the loss of data negatively impacts the models ability to
learn.

A simple solution of the problem of dealing with an imbalanced dataset is the
method of assigning weight to the classes. The weights are assigned so that the
training samples of the majority classes have a lesser impact and the minority
classes have greater impact while training. The less represented a class is, the
higher weight value is appointed and vice versa. The formula used to calculate
the weights is given in (1).

weight class i =
total num samples

num classes ∗ num samples i
(1)

The calculated weights for the classes are: 0.75 for Normal, 0.87 for Prehy-
pertension and 1.93 for Hypertension.

3.3 Model Structure

Recurrent Neural Network (RNN) is a type of a neural network designed to
be able to follow temporal dependencies through temporal sequence. A main
problem with these networks is the vanishing gradient problem. The gradient
disappears or explodes after a few timesteps, thus preventing learning long-term
dependencies. To overcome this problem several solutions have been developed.
The most popular one is the Long Short Term Memory, LSTM. The cells in
a LSTM layer have a internal state and the flow of data is strictly controlled
through the use of three gates: input gate, output gate, and forget gate. The
cells are capable to recall values over arbitrary interval of time.

Convolutional neural network, CNN, is a type of neural network that uses
the mathematical concept of convolution, an operation on two functions that
produces another function.

The input vector for the model is in the format (100, 10, 2) where the values
are length of subsequences, number of timesteps and number of features, respec-
tively. The features used are PPG and ECG. The model has around 450,000
trainable parameters.

For the model architecture, we use a multivariate sequential CNN-LSTM ar-
chitecture. It is a hybrid neural network that contains CNN layers as well as
LSTM layers. The first two layers of the model are time-distributed 1D con-
volutional layers, each with a convolution kernel of size 5 and a rectified linear
(ReLU) activation function. The convolutional layers are then followed by a max
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pooling layer with a pool size of 2. The max pooling layer performs downsam-
pling of the outputs of the previous layer, keeping only the features with the
maximum value. After the max pooling layer we have a time-distributed flatten
layer, which flattens the data making it suitable for the inputs of the LSTM
layers. The next layer is a batch normalization layer that normalizes the out-
puts of the previous layer, significantly reducing the number of training epochs
required to train the model. The batch normalization layer is then followed by
3 LSTM layers each with 128 neurons. Each of the LSTM layers attempts to
learn the long-term dependencies of the features generated by the outputs of
the previous layers. Between the LSTM layers there’s also dropout layers with
a rate of 0.2, used to help prevent overfitting. The model architecture ends with
two dense layers, separated by one more dropout layer. The first dense layer has
128 neurons and ReLU as the activation function, while the second one has 3
neurons with the softmax activation function. Each of the 3 neurons in the last
layer represent one of the classes of the model: Normal (0), Prehypertension (1)
and Hypertension (2). The best results for the model were obtained when using
the Adam optimizer with a learning rate: 0.0005 and decay 0.000001.

A generalised image of the described model is presented in Figure 5. We
depict only the top view, obscuring the pooling, batch normalization and dropout
layers for simplicity.

Fig. 5. Simplified overview of the developed CNN-LSTM model architecture

3.4 Evaluation Metrics

In this section, the metrics that evaluate the performance of this model are
explained. This model attempts to classify the category of blood pressure, hence
the classification evaluation metrics are used:

1. Accuracy is the ratio of correctly predicted samples against the total number
of samples;

2. Precision is the ratio of the number of correctly classified samples and the
total number of samples classified as such;



10 Ivan Kuzmanov et. al

3. Recall is the ratio of the number of correctly classified samples and the total
samples number of that class regardless of whether they where accurately
classified;

4. F1 score is the harmonic mean of precision and recall.

After the aforementioned metrics were calculated, averaging schemes were used
obtaining a single performance value. The schemes used in this paper are:

1. Macro average is a schema often used for multi-class classification that first
calculates the above mentioned metrics independently and averages their
results;

2. Weighted average is a schema that averages the other metrics by assigning
them weight with regard to their class representation. The less represented
a classes is in the testing dataset the higher its weight.

The support is just the number of testing samples for each class from which the
other metrics are calculated. The metrics are presented via a classification report
from the Sklearn Python package.

4 Results and Discussion

In this section, the achieved results are presented and discussed. As previously
elaborated, the proposed model has a CNN-LSTM architecture that predicts the
BP category using ECG and PPG signals.

4.1 Model Training

The dataset is split into training and testing sets with a ratio of 85:15. A further
10% from the training set is designated for a validation dataset. By using a keras
tuner, it is concluded that ADAM optimizer with a learning rate of 0.0005 and
decay of1e-6 is suitable for this specific problem.

4.2 Model Evaluation

In Figure 6 a classification report of the model’s performance is shown. The
testing dataset has 18966 samples divided in three categories - 8564 as Normal
BP, 7161 have Prehypertension and 3241 have Hypertension. The model has
overall accuracy of 0.83. The most distingushable class for the model is the
Normal class. It has a precision of 88%. The Prehypretension class has the lowest
f1-score, that leads us to a conclusion that the model struggles to learn the
class boundaries between the Normal and the Prehypretension class, and the
Prehypretension and the Hypretension class. The evaluation metric values are
calculated from the confusion matrix generated by the model, as shown in Figure
7.

The AUCROC for each class are 0.89, 0.83, and 0.89 respectively.
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Fig. 6. Classification report for the developed model

Fig. 7. Confusion Matrix

4.3 Discussion

The proposed model obtains overall accuracy of 83% and stability in all metrics
among the classes, which is a big improvement compared to our previous best
results with different LSTM models [13]. The improvement over the previous
work [13] lies mainly in the model structure and the preprocessing. A second
CNN layer and a third LSTM were added, which empirically improved the result.
It should be noted that some changes in the preprocessing were made as well, in
regard to signal selection. The criteria for signal selection are more restrictive,
which improves the signal quality while it decreases the size of the dataset.
These results are emphasizing the conclusion that this model can be used in the
development of the new patch, though it still requires further development in
order to be applicable.
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The difference between our study and other published results for the BP
classification is in the specific CNN-LSTM model architecture, as well as in the
preprocessing part. This type of a problem is usually framed as a regression
problem instead of a classification, which makes direct comparison with others
difficult. The authors in the study [10] propose same type of model that attempts
to use the difference between the ECG and PPG signals to generate PAT infor-
mation. For comparison, our model uses the signals directly. Compared to the
reported results with a similar CNN-LSTM model for BP classification [8] - the
classification of Normal vs Hypertension yields accuracy 67.76, which is slightly
higher than Normal vs Prehypertension, our CNN-LSTM model achieves higher
scores of the evaluation metrics (accuracy and AUROC).

It should also be taken in to account that the results the model achieves
are somewhat influenced by the bias introduced during the segmentation phase.
In future work a larger dataset will be used to reduce the bias and enhance
the development of a generalized algorithm for blood pressure classification. In
addition we aim to extend the model’s pulse pressure limits to include abnormal
cases.

One important aspect that is not considered in the current model are the de-
mographic characteristics, since the information gain from these characteristics
is significant. Arteries stiffen with age and as a result the blood pressure needed
to deliver the blood rises, meaning older people have on average higher blood
pressure.

Other aspect that may impact the model is the short segment size (8 sec).
Our further research will focus on both of these aspects. The results show that
the proposed model can distinguish between the different categories. This is
an important trait, since it indicates that using a larger dataset can improve
the results. Hence we assume that using an much larger dataset from different
sources will help to overcome the pointed aspects.

5 Conclusion

Our research is focused on blood pressure category estimation, given ECG and
PPG signals. The idea is to use the embedded sensors placed on a patch in order
to obtain the aforementioned signals, and using a tablet or a remote server to
utilise our developed model. The whole system should be used in emergency and
mass casualty situations. In these situations it is not practical to measure BP
values manually with cuff-based devices for each subject in order to estimate the
subject’s hemodynamic state in conjunction with the other vital parameters ob-
tained by the patch. Other important aspect is that BP varies and thus the BP
measurement should be continuous to enhance the second triage process. Given
there are large number of subjects in situations with high number of casual-
ties, it would not be possible to regularly manually measure BP and effectively
trace changes in subject’s health state. Hence BP category estimation can be an
important feature in the triage process that can increase the survival rate.
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In this paper we propose building and training of CNN-LSTM model. The
input form the model are sequences of ECG and PPG signals and output is the
BP category. An important aspect is the preprocessing stage, given that we have
raw signals. We normalize and filter the ECG and PPG signals from the dataset
we use. Since the dataset contains ABP signals, we extract SBP and DBP from
these signals. The model learns by adjusting its weights.

The proposed model obtains overall accuracy of 83% and stability in all
metrics among the classes (AUCROC for each class are 0.89, 0.83, and 0.89
respectively), which is a big improvement compared to our previous best results
with different LSTM models. This model can be used in conjunction with the
patch and used as described in the beginning of this section. For imminent future
work we plan on refining our model using much larger dataset, as MIMIC III,
and including other futures and characteristics. Later we also plan to work on
refining of the results by producing regression models for estimation of blood
pressure with deep learning, using Big Data for selection of different features
from the ECG and PPG signals.
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