Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/24051
Наслов: Modified growing neural gas algorithm for faster convergence on signal distribution sudden change
Authors: Gancev, Stojancho
Kulakov, Andrea 
Keywords: growing neural gas; faster convergence; fuzzy algorithm; non-stationary distribution;
Issue Date: 29-окт-2009
Publisher: IEEE
Conference: 2009 XXII International Symposium on Information, Communication and Automation Technologies
Abstract: The paper deals with the problem of faster optimal coverage of a Growing Neural Gas algorithm for random signals appearing with non-stationary distributions. A modification of the algorithm that successfully solves this problem will be presented with simulations in a 2-D environment and statistical results that will show its efficiency. A comparison with a previous solution for the same problem using so called Utility measure will be also given.
URI: http://hdl.handle.net/20.500.12188/24051
Appears in Collections:Faculty of Computer Science and Engineering: Conference papers

Files in This Item:
File Опис SizeFormat 
PID996077.pdf568.54 kBAdobe PDFView/Open
Прикажи целосна запис

Page view(s)

44
checked on 3.5.2025

Download(s)

12
checked on 3.5.2025

Google ScholarTM

Проверете


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.