Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/23110
Наслов: On the Kalman filter approach for localization of mobile robots
Authors: Petrovski, Kristijan
Jovanovski, Stole
Mirchev, Miroslav 
Basnarkov, Lasko 
Keywords: robot localization · Extended Kalman Filter · noise estimation · real-world data
Issue Date: 5-сеп-2016
Publisher: Springer, Cham
Conference: International Conference on ICT Innovations
Abstract: In this work we analyze robot motion given from the UTIAS Multi-Robot Dataset. The dataset contains recordings of robots wandering in a confined environment with randomly spaced static landmarks. After some preprocessing of the data, an algorithm based on the Extended Kalman Filter is developed to determine the positions of robots at every instant of time using the positions of the landmarks. The algorithm takes into account the asynchronous time steps and the sparse measurement data to develop its estimates. These estimates are then compared with the groundtruth data provided in the same dataset. Furthermore several methods of noise estimation are tested, which improve the error of the estimate for some robots.
URI: http://hdl.handle.net/20.500.12188/23110
Appears in Collections:Faculty of Computer Science and Engineering: Conference papers

Files in This Item:
File Опис SizeFormat 
trud_newest14.pdf1.17 MBAdobe PDFView/Open
Прикажи целосна запис

Page view(s)

49
checked on 5.5.2024

Download(s)

14
checked on 5.5.2024

Google ScholarTM

Проверете


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.