Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/22954
Наслов: [HTML] from mdpi.com Full View Generalised geometric Brownian motion: Theory and applications to option pricing
Authors: Stojkoski, Viktor
Sandev, Trifce
Basnarkov, Lasko 
Kocarev, Ljupco
Metzler, Ralf
Keywords: geometric Brownian motion; Fokker–Planck equation; Black–Scholes model; option pricing
Issue Date: 18-дек-2020
Publisher: MDPI
Journal: Entropy
Abstract: Classical option pricing schemes assume that the value of a financial asset follows a geometric Brownian motion (GBM). However, a growing body of studies suggest that a simple GBM trajectory is not an adequate representation for asset dynamics, due to irregularities found when comparing its properties with empirical distributions. As a solution, we investigate a generalisation of GBM where the introduction of a memory kernel critically determines the behaviour of the stochastic process. We find the general expressions for the moments, log-moments, and the expectation of the periodic log returns, and then obtain the corresponding probability density functions using the subordination approach. Particularly, we consider subdiffusive GBM (sGBM), tempered sGBM, a mix of GBM and sGBM, and a mix of sGBMs. We utilise the resulting generalised GBM (gGBM) in order to examine the empirical performance of a selected group of kernels in the pricing of European call options. Our results indicate that the performance of a kernel ultimately depends on the maturity of the option and its moneyness.
URI: http://hdl.handle.net/20.500.12188/22954
Appears in Collections:Faculty of Computer Science and Engineering: Journal Articles

Files in This Item:
File Опис SizeFormat 
entropy-22-01432-v3.pdf852.04 kBAdobe PDFView/Open
Прикажи целосна запис

Page view(s)

17
checked on 18.9.2023

Download(s)

7
checked on 18.9.2023

Google ScholarTM

Проверете


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.