Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/22954
DC FieldValueLanguage
dc.contributor.authorStojkoski, Viktoren_US
dc.contributor.authorSandev, Trifceen_US
dc.contributor.authorBasnarkov, Laskoen_US
dc.contributor.authorKocarev, Ljupcoen_US
dc.contributor.authorMetzler, Ralfen_US
dc.date.accessioned2022-09-07T09:42:41Z-
dc.date.available2022-09-07T09:42:41Z-
dc.date.issued2020-12-18-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/22954-
dc.description.abstractClassical option pricing schemes assume that the value of a financial asset follows a geometric Brownian motion (GBM). However, a growing body of studies suggest that a simple GBM trajectory is not an adequate representation for asset dynamics, due to irregularities found when comparing its properties with empirical distributions. As a solution, we investigate a generalisation of GBM where the introduction of a memory kernel critically determines the behaviour of the stochastic process. We find the general expressions for the moments, log-moments, and the expectation of the periodic log returns, and then obtain the corresponding probability density functions using the subordination approach. Particularly, we consider subdiffusive GBM (sGBM), tempered sGBM, a mix of GBM and sGBM, and a mix of sGBMs. We utilise the resulting generalised GBM (gGBM) in order to examine the empirical performance of a selected group of kernels in the pricing of European call options. Our results indicate that the performance of a kernel ultimately depends on the maturity of the option and its moneyness.en_US
dc.publisherMDPIen_US
dc.relation.ispartofEntropyen_US
dc.subjectgeometric Brownian motion; Fokker–Planck equation; Black–Scholes model; option pricingen_US
dc.title[HTML] from mdpi.com Full View Generalised geometric Brownian motion: Theory and applications to option pricingen_US
dc.typeArticleen_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.author.deptFaculty of Computer Science and Engineering-
Appears in Collections:Faculty of Computer Science and Engineering: Journal Articles
Files in This Item:
File Опис SizeFormat 
entropy-22-01432-v3.pdf852.04 kBAdobe PDFView/Open
Прикажи едноставен запис

Page view(s)

76
checked on 4.5.2025

Download(s)

47
checked on 4.5.2025

Google ScholarTM

Проверете


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.