Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/22842
DC FieldValueLanguage
dc.contributor.authorTodorov, D.en_US
dc.contributor.authorZdraveski, Vladimiren_US
dc.contributor.authorKostoska, Magdalenaen_US
dc.contributor.authorGushev, Marjanen_US
dc.date.accessioned2022-09-05T08:06:33Z-
dc.date.available2022-09-05T08:06:33Z-
dc.date.issued2021-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/22842-
dc.description.abstractThis paper examines the problem of parallelizing neural network training. For our solution we use the backpropagation neural network, as a breakthrough example in the field of deep learning. The challenge of our solution is to twist the algorithm in such a way so it can be executed in parallel, rather than sequentially. In this paper we would like to test validity of a research hypothesis if we can increase the speed by parallelizing the back-propagation algorithm and keep the same accuracy. For this purpose we will develop a use-case of a handwriting recognition algorithm and run several experiments to test the performance, both in execution speed and accuracy. At the end we are going to examine just how much it benefits us to try and write a parallel program for a neural network, with regards to the time it takes to train the neural network and the accuracy of the predictions. Our handwriting problem is that of classification, and in order to implement any sort of solution, we must have data. The MNIST dataset of handwritten digits will provide our necessary data to solve the problem.en_US
dc.publisherIEEEen_US
dc.subjectmessage passing interface, neural network, handwriting recognition, multilayer perceptron, parallel processing, distributed processingen_US
dc.titleParallelization of a Neural Network Algorithm for Handwriting Recognition: Can we Increase the Speed, Keeping the Same Accuracyen_US
dc.typeProceeding articleen_US
dc.relation.conference44th International Convention on Information, Communication and Electronic Technology (MIPRO)en_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.author.deptFaculty of Computer Science and Engineering-
crisitem.author.deptFaculty of Computer Science and Engineering-
crisitem.author.deptFaculty of Computer Science and Engineering-
Appears in Collections:Faculty of Computer Science and Engineering: Conference papers
Прикажи едноставен запис

Page view(s)

84
checked on 2.5.2025

Download(s)

88
checked on 2.5.2025

Google ScholarTM

Проверете


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.