
Parallelization of a Neural Network Algorithm for
Handwriting Recognition: Can we Increase the

Speed, Keeping the Same Accuracy
D. Todorov∗, V. Zdraveski∗, M. Kostoska∗ and M. Gusev∗

∗ Ss. Cyril and Methodius University in Skopje, Faculty of Computer Science and Engineering, Skopje, North Macedonia
E-mail: david.todorov@students.finki.ukim.mk, { vladimir.zdraveski, magdalena.kostoska, marjan.gushev }@finki.ukim.mk

Abstract—This paper examines the problem of parallelizing
neural network training. For our solution we use the back-
propagation neural network, as a breakthrough example in the
field of deep learning. The challenge of our solution is to twist
the algorithm in such a way so it can be executed in parallel,
rather than sequentially. In this paper we would like to test
validity of a research hypothesis if we can increase the speed
by parallelizing the back-propagation algorithm and keep the
same accuracy. For this purpose we will develop a use-case of a
handwriting recognition algorithm and run several experiments
to test the performance, both in execution speed and accuracy.
At the end we are going to examine just how much it benefits us
to try and write a parallel program for a neural network, with
regards to the time it takes to train the neural network and the
accuracy of the predictions. Our handwriting problem is that of
classification, and in order to implement any sort of solution, we
must have data. The MNIST dataset of handwritten digits will
provide our necessary data to solve the problem.

Index Terms—message passing interface, neural network,
handwriting recognition, multilayer perceptron, parallel process-
ing, distributed processing

I. INTRODUCTION

We live in a world where everyone has a smartphone at
their disposal and can write anything that comes to mind
on it. Even so, that world is still, and will continue to be
filled with handwritten notes, texts and descriptions. The prime
example are schools where students write their notes in paper
notebooks with pens, rather than on their smartphones with
their fingertips. Some students are naturally good at organizing
their handwritten notes, but some prefer them to be in a digital
format in which they could store them in a cloud, manipulate
them etc. Instead of having to rewrite all of their notes, with
an app for handwriting recognition one could just scan or take
a picture of a page of a notebook, feed it to a piece of software
would be able to process the image and give the written text
as output. Said output could then be processed and stored as
per the user’s desire.

The prime tool that would enable us to build such a system
is Artificial Intelligence (AI). Using machine learning (ML),
researchers have actively been developing new ways and
refining old ways of recognising handwritten text. One of, if
not the biggest breakthrough in the field of ML is the algorithm
known as the multilayer perceptron, more commonly called a
neural network (NN). The neural network is an algorithm that
works similarly to the human brain and enables a computer

to solve problems that would be almost impossible to develop
ad hoc solutions for.

Of course, computer scientists would like to speed up and
optimize the process, if even just a little bit. The idea for
optimizing the training process of the neural network (NN)
is to run it in parallel on multiple CPU cores, or even (if the
hardware is present) on multiple workstations. Splitting up the
work among more processes, the idea is for the program to do
more work in a finite amount of time, than it would’ve done if
it ran sequentially, thus speeding up the execution. Naturally,
we also have to check the accuracy of the neural network
trained in parallel, and how it compares to the accuracy of the
sequentially trained NN.

Our goal with this paper is to determine whether the prob-
lem of training a neural network can be parallelized in such a
way that the time of execution will be sped up, while keeping
the accuracy of the predictions the same. There have been
multiple approaches to parallelizing a NN. Four approaches
are explained in [1], in order of level of granularity, from
training session parallelism, to weight parallelism. Training
session parallelism consists of no communication between the
processes, providing zero overhead. Weight parallelism is the
finest grained solution. With it, the input from each synapse
is calculated in parallel for each node, and the net input
is summed via some suitable communications scheme. Our
solution will be based on the exemplar parallelism approach
which provides little communication overhead and is very
suitable to our experimental environment.

We will start by examining some related scientific papers
regarding the problems of neural networks, handwriting recog-
nition, and parallelization, and how they relate to this paper.
Then we will give a basic overview of our solution, first
by going over existing knowledge of standard NN structure,
followed by a bird’s eye view of the parallel architecture. The
implementation will be discussed in the Experimental methods
section, where we will provide an explanation of a standard
sequential implementation for the NN classification problem, a
parallel implementation, ending the section by giving details
on the specific environment being used to run the tests and
provide our results. At the end we will compare the results
generated by the different implementations, and we will asses
the impact and worth of our solution in the conclusion.



II. RELATED WORK

The applications of AI are vast. From self driving cars,
to medical diagnostics, AI has been providing solutions to
some of the world’s biggest problems. The invention of neural
networks has been one of the biggest breakthroughs in AI and
ML. Heckt-Nielsen [2] presents a survey of the basic theory
of the back-propagation NN architecture covering architectural
design, performance measurement, function approximation
capability, and learning. One of, if not the most, useful
applications of neural networks is in pattern recognition. Pao
[3] has elaborated the nature of the pattern-recognition task
and adaptive pattern recognition (and its applications) as one
of the most useful applications of AI.

One application in which pattern recognition would be right
at home is in the recognition of handwritten text. Oh and
Suen [4] introduce the class modularity concept to the feed-
forward NN classifier to overcome the conventional feed-
forward NN’s complex problem of determining the optimal
decision boundaries for all the classes involved in a high-
dimensional feature space and the limitations that exist in sev-
eral aspects of the training and recognition processes. Graves
and Schmidhuber [5] combine two recent innovations in NN,
multidimensional recurrent NN and connectionist temporal
classification [6]. They introduce a globally trained offline
handwriting recogniser that takes raw pixel data as input.
Unlike competing systems, it does not require any alphabet
specific pre-processing, and can therefore be used unchanged
for any language.

AI requires huge computational power for processing. See-
ing as microprocessor manufacturers have struggled to in-
crease the raw computational power of CPUs, the relevancy
of Moore’s Law has slowly been fading. This in turn has
increased the need for engineers to think of new ways to
increase the amount of computation that is possible in a finite
period of time. This is where parallel computing comes in with
[7] and [8], introducing new paradigms for parallel algorithm
design, performance analysis and program construction. Akl
[9] surveys existing parallel algorithms, with emphasis on
design methods and complexity results.

Parallelization is necessary to cope with the high com-
putational and communication demands of NNs, but general
purpose parallel machines soon reach performance limitations.
Serbedzija [10] explores two approaches: parallel simula-
tion on general purpose computers, and simulation/emulation
on neurohardware. Different parallelization methods are dis-
cussed, and the most popular techniques are explained. Paral-
lelizable optimization techniques are applied to the problem
of pattern recognition and learning in feed-forward neural
networks by Kramer [11].

III. SOLUTION OVERVIEW

A. Neural network structure

Our solution is designed using the standard multilayer
perceptron NN, also known as a backpropagation NN shown
in Fig. 1. The NN typically consists of an input layer of

Fig. 1. Backpropagation NN structure

nodes (perceptrons), an output layer of nodes, and at least
one (usually more) intermediate layer. The network is trained
on a data set consisting of (xi, yi) pairs where xi is a feature
vector used as an input, and yi is the true output, or the ground
truth, for that feature vector.

A node in the ith layer of the NN is connected to all nodes
in the (i + 1)th layer. The connectors that connect a node in
a layer to the nodes in the next layer have assigned weights
wij . We denote by xij the ith input to the node j. A node in
one layer takes all of the products xijwij that come as inputs
from the previous layer, computes their sum zj and uses it to
compute the output (or the input to the next layer).

The NN learns by comparing the computed output with the
true output, and adjusting the weights of the nodes accordingly
so the computed output is the same as the desired one (if the
computed output is already the true output, no adjustment is
done). The changes to the weights propagate back through
the network (hence the name) up until they reach the input
layer. The algorithm stops after a full epoch without change
in weights (sometimes we stop the algorithm prematurely
to combat the problem of overfitting to the training set).
Sometimes the outputs of the problem are not uniformly
distributed among the population of the input/output pairs. For
this reason we need a BIAS node with its own weight assigned
to it, at each non-output layer, that has no inputs going into
it. If the population is biased towards a certain output class,
the BIAS allows us to skew the evaluation function so that we
can better predict the true output.

B. Parallelization

There are multiple strategies to implement a parallel solu-
tion for the backpropagation NN. Some of the main strategies
are discussed by Pethick, Liddle, Huang and Werstein [1]. We
will go with the ”preferred technique” according to Rogers
and Skillicorn [12], which is exemplar parallelism, also known
training example parallelism. In essence, the training set is



Fig. 2. The parallelization method. The dataset is split equally among the processes, each process trains its own neural network, and at the end all the
processes average out their weight vectors.

split into disjoint subsets and each running process (a thread,
microprocessor or separate machine) works on only one sub-
set. The processes need to start with initial states identical to
each other, meaning the weights associated with each node
need to be the same. Usually this means that every weight at
the beginning is set to 1. At the end of each epoch, the changes
are combined and applied together to the neural network by
averaging them out. The diagram for this parallel solution
approach is given in Fig. 2.

Two advantages come to mind when we think about this
approach to parallelizing a NN. First is the small overhead
that occurs because of the communication between processes.
Namely, the processes only communicate at the end of an
epoch to adjust weights, so relatively few messages are gener-
ated. The second advantage is the speed-up during the training
phase. Since the data set is split into n smaller subsets si,
where i = 1, 2, ..., n, the time it takes to go through an epoch
is the maximum of the times ti it takes to iterate through a
subset si (usually called a sub-epoch), or tepoch = max(ti).
A disadvantage to this approach is that it does not provide a
performance increase at the layer level, meaning that no two
nodes in the same process, working on the same subset of
data, work in parallel.

IV. EXPERIMENTAL METHODS

For the purposes of this research, we will conduct two
experiments that correspond to two implementations for the
handwriting recognition back-propagation NN. The first one
will be a classical sequential solution and the other will
be a new parallel implementation. For both experiments, we
will use Python with its sklearn library which includes our
MLPClassifier to train the NN.

For the sake of simplicity, the dataset we will be using to
train the NN is the MNIST dataset [13] of handwritten digits
which includes 60,000 labeled 28x28 images of handwritten
digits in its training set and 10,000 images in its testing set.
The implementation can easily be extended to use the EM-
NIST dataset [14] which also includes images of handwritten
letters.

A. Sequential implementation

The sequential implementation is executed conventionally,
starting by reading the training and test data from csv files
in the format (y, x1, ..., x784) where y is the digit that corre-
sponds to the image represented by the pixels denoted by xi

where each digit xi holds values from 0 to 255 representing
the amount of the color black in the pixel, 0 being all white
and 255 being all black.

After splitting the dataset into training and test data sets, we
will again split the training set into a pair of a training and



validation subsets. The training subset will be used to train a
vast variety of classifiers, each having a different number of
neurons in their hidden layer, and each being run at a different
maximum of epochs. The numbers of neurons in the hidden
layer and the number of epochs will vary in the interval from
25 to 100. We will determine which of the classifiers makes
the most accurate predictions by making predictions on the
validation set and checking to see their accuracy.

Finally, having determined the most accurate classifier, it
is validated by the test data subset. The goal is to find a NN
model that is easy and fast to train but makes the most accurate
predictions possible. Note that sometimes the most accurate
classifier is not the best choice because it may take longer
to train than it’s worth. For this reason, the actual classifier
that will be used on the parallel implementation will need to
be determined as the classifier which has the biggest impact
factor out of all. Our impact factor will be defined as (the
accuracy)/(the training time).

B. Parallel implementation

In development of a parallel implementation, the goal is to
take the training set and distribute it as evenly as possible
among the processes in the pool. The master process, usually
the one with rank=0 is responsible to read the data from the
csv file into memory, to determine the number of training
examples per process and to scatter (or broadcast) the data
among the other processes. After each process has their share
of the training data, they can begin the training independently
of each other. First they initialize their own classifier. We have
observed that the optimal classifier should be one with 50
neurons in its hidden layer and a maximum of 50 epochs.
Afterwards, each process begins fitting (another word for
training) the NN to its respective subset of the training data.

When the processes are finished, they need to send their
weight matrices to the master process whose job is to compute
an average for each respective element in the different weight
matrices, and produces an all encompassing weight matrix for
the neural network. The master process then uses the test data
to predict the class of each training example, comparing it
with the real class and thus, determining the accuracy of the
neural network.

The main tool that will help us write the parallel algorithm
is the Python library mpi4py that offers the means necessary
to write a parallel program using a Message Passing Interface.

C. Experimental environment

The solution is implemented in such a way that it can be
executed on any multiple processor configuration, so long as
the dataset can be split evenly among processes the algorithm
is started with. For example, our training data consists of 6,000
training examples, meaning that the program should be started
with a number of processes n, such that 6,000 is divisible by
n. For our testing purposes, we will run the algorithm on an
i7 7500U dual-core CPU, with n = 2 processes.

Out of the three classifiers described in the sequential
implementation, we will determine the optimal classifier to

Fig. 3. A 3D mesh depicting the training time with respect to the hidden
layer size and number of epochs

Fig. 4. A 3D mesh depicting the accuracy with respect to the hidden layer
size and number of epochs

use for the parallel implementation of the NN. That classifier
should provide a good balance between the accuracy of the
predictions, and the time it takes to train.

To asses the value of our exercise in parallelization, we can
introduce an impact factor parameter, defined as

impact factor =
prediction accuracy ∗ s1

training time ∗ s2
(1)

the reasoning being that the profit is proportional to the
accuracy, while inversely proportional to the training time
(the higher the prediction accuracy, the higher the impact,
and the higher the training time, the lower the impact). The
impact factor parameter defined as such, can provide us
with a numerical representation of the benefit regarding the
parallelization of the neural network algorithm.

The parameters s1 and s2 represent significance factors.
For the purpose of this paper, we will assume that predic-
tion accuracy and training time have equal importance by
setting s1 = s2 = 1. This is not always the case in practice.
Usually, the trade off between time and accuracy will vary
from situation to situation and so the significance parameters
would have to be set accordingly.



Fig. 5. Comparison of training time between the sequential and parallel
algorithms

Fig. 6. Comparison of prediction accuracy between the sequential and parallel
algorithms

V. RESULTS

A. Sequential implementation
Running the script that contains the sequential algorithm, we

can see how much time it takes to train all of the individual
classifiers. In Fig. 3 we can see a mesh of all the classifiers and
how the training time reacts almost linearly to different hidden
layer sizes and different epoch numbers. When it comes to the
accuracy of predicting the test set, the same type of mesh is
given in Fig. 4, where the accuracy reacts very differently to
epoch numbers and hidden layer sizes, from the training time.
As we add more neurons to a classifier’s hidden layer and
we increase the number of epochs, we can surmise that the
time it takes to train it isn’t worth the negligible increase in
accuracy we get. Our impact factor parameter that we defined
earlier shows us that the best trade-off in terms of accuracy
and training time is accomplished using a classifier with 30

neurons in its hidden layer, with a number of 25 epochs. Such
a classifier that gives us a reasonably good accuracy of 78.34
percent using only 4.16 seconds to train, will be used in our
parallel implementation, to see if and how much of an increase
in speed we can gain, whilst keeping the accuracy in check.

B. Parallel implementation

With the parallel algorithm running in a Python script,
we can notice a few interesting details in Fig. 5. First is
the speed with which the neural network is trained. We
are using a classifier identical to optimal classifier from the
sequential implementation (recall that the optimal classifier
had 30 neurons in the hidden layer and a maximum of 25
epochs). Our parallel program managed to train the neural
network in a little over 2 seconds, which is almost half of that
of the sequential algorithm. We can see here that the parallel
way of training a neural network using data parallelism can
bring great benefits regarding training time.

Unfortunately, the same can not be said for the accuracy of
the predictions. Although not bad by any means, we see in
Fig. 6 a significant drop-off from the sequential algorithm’s
78 percent, to this parallel algorithm’s 67 percent accuracy.

We can use our impact factor parameter, which we previ-
ously defined in the experimental environment subsection, to
determine the usefulness of our experiment. For the sequential
algorithm, impact factor = 18.83 while for the parallel
algorithm impact factor = 28.64. Even though the accuracy
of our predictions went down using the parallel training, the
higher impact of the parallel implementation tells us that the
experiment was indeed worthwhile. We still however don’t
get a clear enough picture of the impact of our solution, until
we take into consideration the communication overhead that
occurs during the parallel execution. After the master process
reads the data, it needs to distribute it evenly among the
other processes. Scattering the data takes around 19 seconds,
and so, when we inject that into our calculation, the parallel
impact factor = 3.17 which is a significant drop-off from
the previously calculated 28.64.

VI. CONCLUSION

As with everything in life, every benefit comes with a price.
In our case we wanted to provide an increase in speed for the
training process of the neural network intended for predicting
handwritten digits. Although we achieved that speed up, it
came at the price of accuracy with the predictions.

The algorithm of training neural networks is sequential in
its nature, so the end results make sense taking everything into
consideration. The experiment provided us with an interesting
insight into the world of neural networks and parallel com-
puting and how, sometimes, you can’t have your cake and eat
it too. In order to accomplish something, some sacrifices also
need to be made, whether those be complexity, resources, or
in our case, accuracy.

This experiment proves useful as a jumping-off point for
further research. Priorities in said research would include
refining the computing of the final weight matrix of the trained



NN, rather than just averaging the weight matrices of the
separate NNs trained in the individual processes. We would
also like to explore finer grained solutions where the processes
communicate more often (during or after each epoch, rather
than just at the end of the training to computer the weight
matrix). Another thing that could prove enlightening is to run
the algorithm on different workstations with higher numbers
of processes, or on a cluster of multiple different computers.
That way we could determine the impact different numbers
of processors could have on execution time and whether the
time grows linearly with the number of processors or not, and
whether or not the overhead of communication in a cluster
of computers sharing a network is significantly larger than
that of a single multiprocessor machine. Lastly something that
would likely provide an interesting read, is the exploration of
different ML algorithms. We’ve seen that parallelizing NNs
doesn’t breed satisfactory results, but perhaps Naive Bayes
classifiers, Decision trees, Linear and Quadratic discriminant
analysis (LDA and QDA) etc. could be parallelized in a more
satisfactory manner.

REFERENCES

[1] M. Pethick, M. Liddle, P. Werstein, and Z. Huang, “Parallelization of a
backpropagation neural network on a cluster computer,” in International
conference on parallel and distributed computing and systems (PDCS
2003), 2003.

[2] R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in
Neural networks for perception. Elsevier, 1992, pp. 65–93.

[3] Y. Pao, “Adaptive pattern recognition and neural networks,” 1989.
[4] I.-S. Oh and C. Y. Suen, “A class-modular feedforward neural network

for handwriting recognition,” pattern recognition, vol. 35, no. 1, pp.
229–244, 2002.

[5] A. Graves and J. Schmidhuber, “Offline handwriting recognition with
multidimensional recurrent neural networks,” Advances in neural infor-
mation processing systems, vol. 21, pp. 545–552, 2008.

[6] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connection-
ist temporal classification: labelling unsegmented sequence data with
recurrent neural networks,” in Proceedings of the 23rd international
conference on Machine learning, 2006, pp. 369–376.

[7] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to parallel
computing. Benjamin/Cummings Redwood City, CA, 1994, vol. 110.

[8] W. P. Computing and I. Foster, “Designing and building parallel pro-
grams,” 1995.

[9] S. G. Aki, “The design and analysis of parallel algorithms,” 1989.
[10] N. B. Serbedzija, “Simulating artificial neural networks on parallel

architectures,” Computer, vol. 29, no. 3, pp. 56–63, 1996.
[11] A. H. Kramer and A. Sangiovanni-Vincentelli, “Efficient parallel learn-

ing algorithms for neural networks,” in Advances in neural information
processing systems, 1989, pp. 40–48.

[12] R. Rogers and D. Skillicorn, “Strategies for parallelizing supervised and
unsupervised learning in artificial neural networks using the bsp cost
model,” Queens University, Kingston, Ontario, Tech. Rep, 1997.

[13] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

[14] G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik, “Emnist: Extending
mnist to handwritten letters,” in 2017 International Joint Conference on
Neural Networks (IJCNN). IEEE, 2017, pp. 2921–2926.


