Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис:
http://hdl.handle.net/20.500.12188/22818
Наслов: | Blood pressure class estimation using CNN-GRU model | Authors: | Kuzmanov, Ivan Madevska Bogdanova, Ana Kostoska, Magdalena |
Keywords: | blood pressure (BP) estimation, triage, electrocardiogram (ECG), photoplethysmogram (PPG),gated recurrent unit (GRU), artificial neural network, deep learning, CNN-GRU hybrid model | Issue Date: | 2022 | Conference: | 19th International Conference on Informatics and Information Technologies, CIIT | Abstract: | Blood pressure (BP) estimation can add on great value in emergency medicine, especially in case of mass casualty situations. The presented research aims to create a model for BP class estimation using electrocardiogram (ECG) and photoplethysmogram (PPG) waveforms. We focus on developing a BP classification model as a convolutional neural network (CNN) - gated recurrent unit (GRU) hybrid model, containing both CNN and GRU layers. The used dataset is the publicly available UCI Machine Learning Repository dataset. We have achieved f1 score of 0.83, 0.73 and 0.74 respectively according to the BP classes and 78% overall accuracy. | URI: | http://hdl.handle.net/20.500.12188/22818 |
Appears in Collections: | Faculty of Computer Science and Engineering: Conference papers |
Files in This Item:
File | Опис | Size | Format | |
---|---|---|---|---|
CIIT_2022_paper_24.pdf | 275.24 kB | Adobe PDF | View/Open |
Page view(s)
87
checked on 9.11.2024
Download(s)
117
checked on 9.11.2024
Google ScholarTM
Проверете
Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.