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Abstract—Blood pressure (BP) estimation can add on great
value in emergency medicine, especially in case of mass casualty
situations. The presented research aims to create a model for
BP class estimation using electrocardiogram (ECG) and photo-
plethysmogram (PPG) waveforms. We focus on developing a BP
classification model as a convolutional neural network (CNN) -
gated recurrent unit (GRU) hybrid model, containing both CNN
and GRU layers. The used dataset is the publicly available UCI
Machine Learning Repository dataset. We have achieved f1 score
of 0.83, 0.73 and 0.74 respectively according to the BP classes
and 78% overall accuracy.
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I. INTRODUCTION

Blood pressure (BP) is an important metric to determine
a patient’s hemodynamic stability. While primary triage (ex.
START) does not include blood pressure in the decision mak-
ing process, this metric is important in the secondary triage.
Blood pressure is usually measured noninvasively by using
a cuff-based measuring device or invasively, in a specialized
hospital setting. Using the first method (cuff-based), the values
are obtained on demand or in regular intervals thus are non-
continuous. The second method requires specific conditions,
equipment and highly-trained staff. Furthermore in case of
mass casualty event it may not be possible to repeatedly
measure blood pressure with both of the methods.

The goal of our research is to estimate BP in real-time given
the embedded electrocardiogram (ECG) and photoplethysmo-
gram (PPG) signals’ values. ECG represents the electrical
activity of the heart, while PPG shows the changes of blood
volume in the microvascular tissue. The ECG and PPG values
will be obtained by using patch-like combined multi-sensor
attached to a human’s chest. Both of them are low cost sensors
that can be used as integrated sensors on a patch. The sensors
will obtains basic signals and vital parameters necessary for
triage process [1]. The correlation among BP, ECG and PPG
has been researched in other studies [2] [3] [4] [5].

The ECG and PPG signals are given in a time series.
Recurrent neural networks are a type of neural networks
that specialize in processing sequential information that are
specifically built to be able to follow long term dependencies.

This type of network are typically slow and difficult to train.
Because of the nature of the problem the classification needs to
be continuous. To further increase the efficiency of the model
it’s combined with a CNN layer which essentially performs
feature selection. The model our paper proposes is a CNN-
GRU neural network.

The rest of the paper is organized as follows. Section 2
presents an overview on similar papers or related researches.
The methodology is described in Section 3. The results of
the experiments and the discussion are presented in Section
4, including the introduction of the dataset, the preprocessing
part and the used methods. Section 5 presents the conclusion.

II. RELATED WORK

In this section, an exploratory analysis of related work is
done. Estimation of blood pressure from ECG and PPG is a
theme that has vastly been researched. There are mainly two
approaches used in similar papers: the first one is extracting
relevant features from the signals and the other one is building
neural networks that can process raw signals. In this paper
it’s opted to go with the second approach because of lack of
assurance that the PPG and ECG signals in this dataset have
been recorded in sync.

The most commonly used features with the highest infor-
mation gain are pulse transit time (PTT) and pulse arrival time
(PAT). PTT is more prominent in recent work. The features
are similar, however a study done on this topic shows that
PAT is not unable to detect subtle BP changes as well as
PTT [6]. PTT forms the basis for continuous BP estimation in
many works [4] [7]. Often time the features are combined with
others in an attempt to get better results. One such features is
photoplethysmogram intensity ratio (PIR), a measure for the
arterial diameter change [8]. The strong correlation between
the ratio and BP is explored in a different study that also
states that patient with hypertension have a higher mean
PIR with higher variance for this value [9]. Another study
performs a complexity analysis to extract features from ECG.
The machine learning model of that study achieves mean
absolute error (MAE) of 8.64 mmHg for SBP, 18.20 mmHg
for DBP, and 13.52 mmHg for MAP [10]. These results are
further improved with model calibration. The features are
not always limited to what can be extracted from the PPG



and/or ECG signal. For example a study focusing on features
extracted from PPG and combining them with demographic
characteristics achieves root mean square error (RMSE) of
6.74 mmHg for SBP and 3.59 mmHg for DBP.

The bio signals that a body emits are depended on many
factors such as: medications, circulatory system diseases and
interaction between the different physiological systems. This
contributes to patient-specific morphological contours for the
signals. This is the main problem with using the approach
with feature extraction. Other studies focus on building model
capable of estimating blood pressure from raw signals. One
such study’s proposed solution is a hierarchical ANN-LSTM
neural networks, where the lower level extract the features
and the higher ones track time distributed dependencies. The
proposed network’s results are RMSE of 1.56 mmHg for
SBP and 0.85 mmHg for DBP [11]. A hybrid CNN-LSTM
network that works with a similar approach with the previously
mentioned one achieves MAE of 4.43 ± 6.09 mmHg for SBP
and 3.23 ± 4.75 mmHg for DBP [12]. A study attempts to
predict the blood pressure in hemodialysis patients using a
CNN-GRU neural network [13]. Another study attempts to
utilize the difference between PPG and ECG to feed to a neural
network with a CNN-LSTM architecture [14]. This difference
is used to calculate PAT and it allows the network to learn
PAT information.

III. MATERIALS AND METHODS

In this section we describe the dataset, data preprocessing
procedures, the developed CNN-GRU model and the used
evaluation metrics.

A. Dataset

Most of BP studies utilise the MIMIC database or some
subset of it. However because of a current memory storage
constraints, in this study the "Cuff-Less Blood Pressure Es-
timation Data Set" published in the UCI Machine Learning
Repository [15] is used. This dataset is consisted of 12000 in-
stances, each having three recorded signals of variable length.
The signals correspond to PPG, ABP, and ECG recorded with a
125 Hz frequency. There is no other information in the dataset,
nor patient identifiers, so it’s impossible to identify whether
two separate instance are signals from the same patient.

1) PPG: Photoplethysmograph, PPG, measures the blood
volume changes in microvascular tissue by detecting changes
of light absorption on the skin. It’s a technology that has gotten
prominence in the medical field in recent years because of it’s
low-cost and it’s usability in understanding the cardiovascular
system [3].

2) ABP: Arterial blood pressure, ABP is a waveform
representing blood pressure measured from within an artery.
Measurements of this kind can only be taken in a hospital
setting. Blood pressure is the pressure created in the blood
vessels of a cardiovascular system as the heart pumps the
blood. The positive peaks of the waveform represent the
moment when the heart contracts and the blood pressure is at
it’s highest and the negative peaks represent the moment when

the heart relaxes after a contraction and the blood pressure is at
it’s lowest. The blood pressure in these moments are known as
the systolic blood pressure, SBP, and dyastolic blood pressure,
DBP.

3) ECG: The heart plays a vital role in the circulation of
blood. Electrocardiogram, ECG, measure the electrical activity
of the heart. While it’s measured no electricity is send to
the body. It only tracks the polarization wave caused by
the heart as it beats. The ECG in this study is a 1-channel
one. With each beat an electrical impulses coordinate the
heart’s contraction. An ECG simply records these impulses
as they move through different parts of the heart. On Figure 1
a 8 second electrocardiogram is visualized and the peaks
characteristic to ECG are marked.

Fig. 1. 8s ECG waveform with annotated peaks

B. Preprocessing

1) Data Validation: The data is validated according to the
two following criteria: 1. There aren’t missing values in any of
the three signals, PPG, ABP and ECG; 2. The pulse pressure
is above 20 and less than 80. No data instance is taken into
consideration when building the models if both of the criteria
weren’t met.

The average pulse pressure, i.e. the difference between SBP
and DBP is between 40 and 60. Too low pulse pressure
indicates poor heart function, while too high pulse pressure
indicates a health problem. Valid data are considered to be
in the range (20 , 80). It is also worth noting that the signal
quality is mediocre. The values calculated from signals with
extremely low or high pulse pressure may be a result of a
sensor noise. This problem can be remedied with a larger
dataset of higher quality signals in future work.

2) Data Segmentation: The signals per patient in the dataset
are with variable length, within the range [1000, 74000] data
points. The signals are recorded with frequency of 125 Hz,
concluding that the shortest signal length in the dataset is 8
seconds and the longest - 9.9 minutes long.

Different studies suggest and work with segments of differ-
ent length, usually within the range of 5-30 seconds [12] [10].
In this study it is decided to use 8 seconds (8s) segment length.
This decision was influenced by the aforementioned fact that



the shortest signal has a length of 8 seconds and if we were to
work with longer signal per instance, we would have had to
exclude the shorter signals, reducing the already small datase.
To further increase the number of samples, multiple segments
are taken from the longer signals. The segments are taken
sequentially with no overlap. The decision to use this type of
segmentation was influenced by a similar study [16], where
the same approach was used. It should be noted that by taking
multiple samples from the same patient we introduce bias due
to the patients specific morphological contours. However this
approach was deemed as necessary since this dataset is quite
limited.

3) Normalization: The PPG and ECG signals are normal-
ized by scaling the values into decimals between 0 and 1,
with 0 being the minimum value of the signal and 1 being the
maximum. Normalizing the data before training the models is
a common practice and generally leads to better convergence
in machine and deep learning models.

4) Filtering: Noise is a common problem with sensors. It
can appear in a signal for a variety of reasons such as - noise
caused by the electrical activity of the muscles, breathing, loss
of contact with the skin, etc. Often, the noise has the same
frequency as the signal and thus it’s difficult to completely
remove it without distorting the signal.

Filtering is the process of removing unwanted component
from the signal. For the filtering of biological signals the most
commonly used filters are notch and bandwidth filters. The
decision to use this type of filters was made based on the
results presented in previous works in this field which show
that bandwidth filters are suitable for both PPG and ECG [11].
However, the PPG is filtered by a filter of the fourth order and
the ECG by a filter of the fifth order.

5) BP categorization: For the purposes of this study it’s
necessary to transform the ABP waveform into 2 scalars, SBP
and DBP, used for the blood pressure categorisation. To avoid
possible outliers it’s decided that instead of taking the min and
max value in the segment, it’s better to calculate the average
of the local extremes, maxima for SBP and minima for DBP
[17].

An illustration of the extraction process is presented on
Figure 2.

The European Society of Hypertension and the American
College of Cardiology have different classifications schemes
for blood pressure categorization. In this study it’s decide
to use the latter. Following the scheme there are four blood
pressure: normal, elevated, stage 1 hypertension and stage 2
hypertension [18]. Since the dataset is small and the hyper-
tension classes are under represented, it is decided to merge
them into a single class. The elevated blood pressure class in
this study is referred to as prehypertension. In Table I can be
seen the conditions for division and the number of samples
per class.

As shown in Table I, there is a class imbalance in the
dataset used in this study. The results of models trained on
an imbalanced dataset often favor the more common classes.
Many solutions have been developed to counteract this prob-

Fig. 2. Illustration of SBP and DBP extraction from ABP waveform

TABLE I
BLOOD PRESSURE CATEGORIZATION

Category SBP DBP Number of Samples
Normal < 120 < 80 118644
Prehypertension 120− 139 80− 89 102927
Hypertension ≥ 140 ≥ 90 49948

lem. The most common and widely used are oversampling
of the minority classes and undersampling of the majority
classes. The most popular type of oversampling, SMOTE is
not applicable to this problem, since the input vectors are
time distributed sequences. Undersampling methods were also
considered. These methods are useful in some specific cases,
but usually achieve lower classification performance because
the loss of data negatively impacts the models ability to
learn. A problem with their adaptation for he purpose in this
research, is the problem of measuring the similarity between
two signals. There is a undersampling method that removes
samples at random, however this method is unlikely to yield
good results because of the above mentioned problem.

A simple solution of the problem of dealing with an
imbalanced dataset is the method of assigning weight to
the classes. The weights are assigned so that the training
samples of the majority classes have a lesser impact and the
minority classes have greater impact while training. The less
represented a class is, the higher weight value is appointed
and vice versa. The formula used to calculate the weights is
weight_class_i = total_num_samples

num_classes∗num_samples_i . The calculated
weights for the classes are: 0.76 for Normal, 0.88 for Prehy-
pertension and 1.81 for Hypertension.

C. Model Structure

Recurrent Neural Network (RNN) is a type of neural
networks designed to be able to follow temporal dependen-
cies through temporal sequence. A main problem with these
networks is the vanishing gradient problem. The gradient
disappears or explodes after a few timesteps, thus preventing
learning long term dependencies. To overcome this problem
several solutions have been developed. The most popular one



is the Long Short Term Memory, LSTM. The cells in a
LSTM layer have a internal state and the flow of data is
strictly controlled through the use of three gates: input gate,
output gate, and forget gate. Gated recurrent units, GRU are
recurrent network layers that are similar to LSTM, however
they have fewer parameters and lack a forget gate. Even with
this simplification they perform comparably on a variety of
problems [19].The gates in a GRU cell are called an update
gate and a reset gate. They control the flow of data. A GRU
cell has the capacity to keep information in the form of a cell
state for a long time without overwriting it.

A simple way to improve a recurrent neural networks is the
use of bidirectional layers. A bidirectional layer is made up
of two different layers linked to the same output layer. The
time-distributed sequence the network is processing is passed
once forwards and once backwards. By passing the sequence
backwards, the network attempts to use future context to
explain the present by looking at the previous data points. The
same is true for GRU layers. Networks that utilize bidirectional
layers are more computationally expensive than networks of
the same size that utilize only single directional recurrent
layers [20].

Convolutional neural network, CNN, is a type of neural
network that uses the mathematical concept of convolution, an
operation on two functions that produces another function. It’s
a popular network that’s most often used in problems involving
computer vision and picture analysis. It should be noted that
ability to extract patterns from data also makes applicable for
solving other types of problems than those mentioned above
such as processing natural languages, recommending systems,
brain-computer interfaces and any other where patterns can be
found.

The input vector consist of 2000 real numbers and it enters
the network in the format (100, 10, 2), where the values
correspond to (length of subsequences, number of timesteps,
number of features). There are 2 features: PPG and ECG. The
size of the subsequences and the size of the timesteps are
inversely proportional. If the subsequences are too small the
CNN won’t be able to find patterns in them, while if there are
too few timesteps the ability to track longterm dependencies
granted by the GRU won’t be fully utilized. Keeping that in
mind it’s empirically decided on previously mentioned values.

We use a multivariate CNN-GRU architecture. A CNN-GRU
is a hybrid neural network that contains both CNN and GRU
layers. The first layer is a time distributed 1d convolutional
layer that receives the input vector. This layer processes the
subsequences attempting to find usable features. Convolutional
layers are typically followed by max pooling ones, such is the
case in our model. Max pooling layers perform downsampling
of the inputs from the previous layer retaining only the most
salient features. A batch normalization layer normalizes the
inputs and stabilizes the learning process. After this step,
the data is passed to a bidirectional GRU layer. This layer
attempts to follow the temporal dependencies of the features
generated by the convolution layer. The network ends with
a dense layer with three neurons, one for each class, with a

Softmax activation. In the proposed model, each of the classes
(Normal, Prehypertension, Hypertension) is represented as 0,
1, 2, respectively.

The model is somewhat similar to CNN-LSTM models
given in related work, with the main difference being that
most of those models are geared to solving regression, while
ours works with classification, as well as the use of a GRU
instead of an LSTM layer. The goal of this study is to aid in
the development of a lightweight algorithm for blood pressure
category classification. Since GRU layers are simpler and
therefore faster yet comparable to LSTM, they are used as
a part in this architecture.

D. Evaluation Metrics

In this section, the metrics that evaluate the performance of
this model are explained. This model attempts to classify the
category of blood pressure, hence the classification evaluation
metrics are used:

1) Accuracy is the ratio of correctly predicted samples
against the total number of samples;

2) Precision is the ratio of the number of correctly classified
samples and the total number of samples classified as
such;

3) Recall is the ratio of the number of correctly classified
samples and the total number of samples of that class
regardless of whether they where accurately classified;

4) F1 score is the harmonic mean of precision and recall.
After the aforementioned metrics were calculated, averaging
schemes were used obtaining a single performance value. The
schemes used in this paper are:

1) Macro average is a schema often used for multi-class
classification that first calculates the above mentioned
metrics independently and averages their results;

2) Weighted average is a schema that averages the other
metrics by assigning them weight with regard to their
class representation. The less represented a classes is in
the testing dataset the higher its weight.

The support is just the number of testing samples for each class
from which the other metrics are calculated. The metrics are
presented via a classification report from the sklearn python
package.

IV. RESULTS AND DISCUSSION

In this section, the achieved results are presented and
discussed. The proposed model has a CNN-GRU architecture
that predicts the BP category using ECG and PPG signals.

A. Model Training

The dataset is split into training and testing sets with a ratio
of 85:15. A further 10% from the training set is designated
for a validation dataset. By using a keras tuner, it is concluded
that ADAM optimizer with a learning rate of 0.001 is suitable
for this specific problem. The most successful model structure
so far was trained with a batch size of 512 for 22 epochs.



B. Model Evaluation

In Figure 3 a classification report of the model’s per-
formance is shown. The testing dataset has 40728 samples
divided in three categories - 17673 as normal BP, 15466 have
prehypertension and 7589 have hypertension. The model has
overall accuracy of 0.78. The most distingushable class for
the model is the normal class. It has a precision of 88%. The
prehypretension class has the lowest f1-score, that leads us
to a conclusion that the model struggles to learn the class
boundaries between the normal and the prehypretension class,
and the prehypretension and the hypretension class.

Fig. 3. Classification report

In Figure 4 the training and validation accuracy per epoch
are shown and in Figure 5 the training and validation loss per
epoch are shown.

Fig. 4. Results - Training and validation accuracy

C. Discussion

The proposed model obtains overall accuracy of 78%, which
is higher than our previous best results with different LSTM
models. While there is an improvement, the model would still
require further development in order to be applicable.

Most of the studies listed in related work utilize regression
models. Thus making direct comparison with our classification
model impossible. It should also be taken in to account that
the results the model achieves are somewhat influenced by the
bias introduces during the segmentation phase. In future work
a larger dataset will be used to reduce the bias and enhance

Fig. 5. Training and validation loss

the development of a generalized algorithm for blood pressure
classification, as well as extending the model’s pulse pressure
limits to include abnormal cases.

One important aspect that is not considered in the current
model are the demographic characteristics, since the infor-
mation gain from these characteristics is significant. Arteries
stiffen with age and as a result the blood pressure needed to
deliver the blood rises, meaning older people have on average
higher blood pressure.

Other aspect that may impact the model is the short segment
size (8 sec). Our further research will focus on both of
these aspects. The results show that the proposed model can
distinguish between the different categories. This is important
trait, since they indicate that using a larger dataset can improve
the results. Hence we assume that using an much larger dataset
from different sources will help to overcome the pointed
aspects.

V. CONCLUSION

Our research is focused on blood pressure category esti-
mation, given ECG and PPG signals. The idea is to use the
embedded sensors placed on a patch in order to obtain the
aforementioned signals, and using a tablet or a remote server to
utilise our developed model. The whole system should be used
in emergency and mass casualty situations. In these situations
it is not practical to measure BP values manually with cuff-
based devices for each subject in order to estimate the subject’s
hemodynamic state in conjunction with the other vital parame-
ters obtained by the sensor. Other important aspect is that BP
varies and thus the BP measurement should be continuous
to enhance the second triage process. Given large number
of subjects in situations with high number of casualties, it
would not be possible to regularly manually measure BP and
effectively trace changes in subject’s health state. Hence BP
category estimation can be an important future in the triage
process and increase the survival rate.



In this paper we propose building and training of CNN-
GRU model. The input form the model are sequences of ECG
and PPG signals and output is the BP category. An important
aspect is the preprocessing stage, given that we have raw
signals. We normalize and filter the ECG and PPG signals from
the dataset we use. Since the dataset contains ABP signals, we
extract SBP and DBP from these signals. The model learns by
adjusting its weights.

For imminent future work we plan on refining our model
using much larger dataset, as MIMIC III, and including other
futures and characteristics. Later we also plan to work on
refining of the results by developing regression models for BP
estimation with deep learning approach, using Big Data for
selection of different features from the ECG and PPG signals.

ACKNOWLEDGMENT

This paper has been written thanks to the support of the
"Smart Patch for Life Support Systems" - NATO project
G5825 SP4LIFE and by the National project IBS4LIFE of
Faculty of Computer Science and Engineering, at Ss. Cyril
and Methodius University in Skopje.

REFERENCES

[1] F. Lehocki, A. M. Bogdanova, M. Tysler, B. Ondrusova, M. Simjanoska,
B. Koteska, M. Kostoska, M. Majak, and M. Macura, “Smartpatch
for victims management in emergency telemedicine,” in 2021 13th
International Conference on Measurement, 2021, pp. 146–149.

[2] Y.-H. Li, L. N. Harfiya, K. Purwandari, and Y.-D. Lin, “Real-
time cuffless continuous blood pressure estimation using deep
learning model,” Sensors, vol. 20, no. 19, 2020. [Online]. Available:
https://www.mdpi.com/1424-8220/20/19/5606

[3] Y.-C. Hsu, Y.-H. Li, C.-C. Chang, and L. N. Harfiya, “Generalized
deep neural network model for cuffless blood pressure estimation with
photoplethysmogram signal only,” Sensors, vol. 20, no. 19, 2020.
[Online]. Available: https://www.mdpi.com/1424-8220/20/19/5668

[4] Y. Choi, Q. Zhang, and S. Ko, “Noninvasive cuffless blood pressure
estimation using pulse transit time and hilbert–huang transform,”
Computers & Electrical Engineering, vol. 39, no. 1, pp. 103–111,
2013, special issue on Recent Advanced Technologies and Theories for
Grid and Cloud Computing and Bio-engineering. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0045790612001711

[5] C. Poon and Y. Zhang, “Cuff-less and noninvasive measurements of
arterial blood pressure by pulse transit time,” in 2005 IEEE Engineering
in Medicine and Biology 27th Annual Conference, 2005, pp. 5877–5880.

[6] G. Zhang, M. Gao, D. Xu, N. B. Olivier, and R. Mukkamala, “Pulse
arrival time is not an adequate surrogate for pulse transit time as a
marker of blood pressure,” Journal of Applied Physiology, vol. 111,
no. 6, pp. 1681–1686, 2011, pMID: 21960657. [Online]. Available:
https://doi.org/10.1152/japplphysiol.00980.2011

[7] S. Goli and Jayanthi, “Cuff less continuous non-invasive blood pres-
sure measurement using pulse transit time measurement,” International
Journal of Recent Development in Engineering and Technology, vol. 2,
no. 1, pp. 86–91, 2014.

[8] X.-R. Ding and Y.-T. Zhang, “Photoplethysmogram intensity ratio: A
potential indicator for improving the accuracy of ptt-based cuffless blood
pressure estimation,” in 2015 37th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC), 2015,
pp. 398–401.

[9] Y. Chen, Y. Zhu, H. T. Ma, and H. Huang, “A study of photoplethys-
mography intensity ratio in hypertension,” in 2016 IEEE International
Conference on Real-time Computing and Robotics (RCAR), 2016, pp.
317–320.

[10] M. Simjanoska, M. Gjoreski, M. Gams, and A. Madevska Bogdanova,
“Non-invasive blood pressure estimation from ecg using machine
learning techniques,” Sensors (Basel, Switzerland), vol. 18, no. 4,
p. 1160, Apr 2018, 29641430[pmid]. [Online]. Available: https:
//pubmed.ncbi.nlm.nih.gov/29641430

[11] M. S. Tanveer and M. K. Hasan, “Cuffless blood pressure
estimation from electrocardiogram and photoplethysmogram using
waveform based ann-lstm network,” Biomedical Signal Processing
and Control, vol. 51, pp. 382–392, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1746809419300722

[12] S. Yang, Y. Zhang, S.-Y. Cho, R. Correia, and S. P. Morgan, “Non-
invasive cuff-less blood pressure estimation using a hybrid deep learning
model,” Optical and Quantum Electronics, vol. 53, no. 2, p. 93, Jan
2021. [Online]. Available: https://doi.org/10.1007/s11082-020-02667-0

[13] H.-W. Hu, W.-L. Jheng, E.-H. Huang, K.-Y. Chen, C.-H. Liu, H.-
Y. Chi, W. Chin-Yu, Y.-C. Chen, J.-A. Wang, H.-M. Lin, S. Ghose,
C.-W. Chen, and J.-F. Wang, “Blood pressure value prediction in
hemodialysis patients using the cnn+gru network architecture,” in 2021
9th International Conference on Orange Technology (ICOT), 2021, pp.
1–4.

[14] D. U. Jeong and K. M. Lim, “Combined deep cnn–lstm network-based
multitasking learning architecture for noninvasive continuous blood
pressure estimation using difference in ecg-ppg features,” Scientific
Reports, vol. 11, no. 1, p. 13539, Jun 2021. [Online]. Available:
https://doi.org/10.1038/s41598-021-92997-0

[15] M. Kachuee, M. M. Kiani, H. Mohammadzade, and M. Shabany, “Cuff-
less high-accuracy calibration-free blood pressure estimation using pulse
transit time,” in 2015 IEEE International Symposium on Circuits and
Systems (ISCAS), 2015, pp. 1006–1009.

[16] S. Baker, W. Xiang, and I. Atkinson, “A hybrid neural network
for continuous and non-invasive estimation of blood pressure from
raw electrocardiogram and photoplethysmogram waveforms,” Computer
Methods and Programs in Biomedicine, vol. 207, p. 106191, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0169260721002650

[17] T. Athaya and S. Choi, “An estimation method of continuous non-
invasive arterial blood pressure waveform using photoplethysmography:
A u-net architecture-based approach,” Sensors, vol. 21, no. 5, 2021.
[Online]. Available: https://www.mdpi.com/1424-8220/21/5/1867

[18] A. V. Chobanian, G. L. Bakris, H. R. Black, W. C. Cushman, L. A.
Green, J. L. Izzo, D. W. Jones, B. J. Materson, S. Oparil, J. T.
Wright, E. J. Roccella, and null null, “Seventh report of the joint
national committee on prevention, detection, evaluation, and treatment
of high blood pressure,” Hypertension, vol. 42, no. 6, pp. 1206–1252,
2003. [Online]. Available: https://www.ahajournals.org/doi/abs/10.1161/
01.HYP.0000107251.49515.c2

[19] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” 2014.

[20] S. Siami-Namini, N. Tavakoli, and A. S. Namin, “The performance of
lstm and bilstm in forecasting time series,” in 2019 IEEE International
Conference on Big Data (Big Data), 2019, pp. 3285–3292.


