Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/20773
Наслов: Weed detection dataset with RGB images taken under variable light conditions
Authors: Lameski, Petre 
Zdravevski, Eftim 
Trajkovikj, Vladimir 
Kulakov, Andrea 
Keywords: dataset, weed detection, machine learning, signal processing, precision agriculture
Issue Date: 18-сеп-2017
Publisher: Springer, Cham
Conference: International Conference on ICT Innovations
Abstract: Weed detection from images has received a great interest from scientific communities in recent years. However, there are only a few available datasets that can be used for weed detection from unmanned and other ground vehicles and systems. In this paper we present a new dataset (i.e. Carrot-Weed) for weed detection taken under variable light conditions. The dataset contains RGB images from young carrot seedlings taken during the period of February in the area around Negotino, Republic of Macedonia. We performed initial analysis of the dataset and report the initial results, obtained using convolutional neural network architectures.
URI: http://hdl.handle.net/20.500.12188/20773
Appears in Collections:Faculty of Computer Science and Engineering: Conference papers

Files in This Item:
File Опис SizeFormat 
ICT2017_Lameski_Zdravevski_Trajkovik_Kulakov.pdf9.02 MBAdobe PDFView/Open
Прикажи целосна запис

Page view(s)

86
checked on 3.5.2025

Download(s)

149
checked on 3.5.2025

Google ScholarTM

Проверете


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.