Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис:
http://hdl.handle.net/20.500.12188/17751| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Martina Shushlevska, Danijela Efnusheva, Goran Jakimovski, Zdravko Todorov | en_US |
| dc.date.accessioned | 2022-05-25T15:16:04Z | - |
| dc.date.available | 2022-05-25T15:16:04Z | - |
| dc.date.issued | 2022 | - |
| dc.identifier.uri | http://hdl.handle.net/20.500.12188/17751 | - |
| dc.language.iso | en | en_US |
| dc.publisher | Anhalt University of Applied Sciences | en_US |
| dc.title | Anomaly Detection with Various Machine Learning Classification Techniques over UNSW-NB15 Dataset | en_US |
| dc.type | Proceedings | en_US |
| dc.relation.conference | International Conference on Applied Innovation in IT, ICAIIT 2022 | en_US |
| dc.relation.conference | https://opendata.uni-halle.de//handle/1981185920/78880 | en_US |
| dc.identifier.doi | 10.25673/76928 | - |
| item.grantfulltext | none | - |
| item.fulltext | No Fulltext | - |
| Appears in Collections: | Faculty of Electrical Engineering and Information Technologies: Conference Papers | |
Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.