Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис:
http://hdl.handle.net/20.500.12188/17460
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tenev, Aleksandar | en_US |
dc.contributor.author | Markovska-Simoska, Silvana | en_US |
dc.contributor.author | Kocarev, Ljupco | en_US |
dc.contributor.author | Pop-Jordanov, Jordan | en_US |
dc.contributor.author | Müller, Andreas | en_US |
dc.contributor.author | Candrian, Gian | en_US |
dc.date.accessioned | 2022-04-19T09:51:43Z | - |
dc.date.available | 2022-04-19T09:51:43Z | - |
dc.date.issued | 2014-07-01 | - |
dc.identifier.uri | http://hdl.handle.net/20.500.12188/17460 | - |
dc.description.abstract | Machine learning techniques that combine multiple classifiers are introduced for classifying adult attention deficit hyperactivity disorder (ADHD) subtypes based on power spectra of EEG measurements. The analyzed sample includes 117 adults (67 ADHD, 50 controls). The measurements are taken for four different conditions: two resting conditions (eyes open and eyes closed) and two neuropsychological tasks (visual continuous performance test and emotional continuous performance test). We divide the sample into four data sets, one for each condition. Each data set is used for training of four different support vector machine classifiers, while the output of classifiers is combined using logical expression derived from the Karnaugh map. The results show that this approach improves the discrimination between ADHD and control groups, as well as between ADHD subtypes. | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | International Journal of Psychophysiology | en_US |
dc.subject | ADHD EEG power spectra Support vector machines Karnaugh map | en_US |
dc.title | Machine learning approach for classification of ADHD adults | en_US |
dc.type | Journal Article | en_US |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
crisitem.author.dept | Faculty of Computer Science and Engineering | - |
Appears in Collections: | Faculty of Computer Science and Engineering: Journal Articles |
Files in This Item:
File | Опис | Size | Format | |
---|---|---|---|---|
INTPSY10591_-_Machine_Learning_Approach_for_Classification_of_ADHD_adults-with-cover-page-v2.pdf | 504.23 kB | Adobe PDF | View/Open |
Page view(s)
87
checked on 20.7.2025
Download(s)
360
checked on 20.7.2025
Google ScholarTM
Проверете
Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.