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Machine learning techniques that combine multiple classifiers are introduced for classifying adult attention

deficit hyperactivity disorder (ADHD) subtypes based on power spectra of EEG measurements. The analyzed

sample includes 117 adults (67 ADHD, 50 controls). The measurements are taken for four different

conditions: two resting conditions (eyes open and eyes closed) and two neuropsychological tasks (visual

continuous performance test and emotional continuous performance test). We divide the sample into four

data sets, one for each condition. Each data set is used for training of four different support vector machine

classifiers, while the output of classifiers is combined using logical expression derived from the Karnaugh

map. The results show that this approach improves the discrimination between ADHD and control groups,

as well as between ADHD subtypes.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Attention deficit hyperactivity disorder (ADHD) is heterogeneous

neurobehavioral disorder that is most frequently diagnosed in children

and adolescents and it has more recently been documented to continue

into adulthood. According to DSM-IV (American Psychiatric Association,

1994), the disorder is characterized by inattention, hyperactivity and im-

pulsivity symptoms. The ICD-10 (World Health Organization, 1993), al-

though using different name, hyperkinetic disorder (HD), lists similar

criteria for the disorder. The prevalence of the disorder in childhood is es-

timated between 5 and 9% (Polanczyk et al., 2007; American Academy of

Pediatrics, 2000). The ADHD symptoms may decline over time, however

more than one half of the ADHD children continue to manifest clinically

significant symptoms after reaching adulthood. That means that nearly

5% of the adults worldwide are affected (Wender, 1995).

Most of the EEG studies concern the ADHD children and they sum-

marize indicators such as lower alpha and beta bands, and higher

theta and delta bands to discriminate the ADHD children from

healthy control groups (Barry et al., 2003; Clarke et al., 1998, 2001a,

2001b, 2002; Lubar, 1991; Monastra et al., 1999; Pop-Jordanova et

al., 2005). However, the results from the few EEG studies in which

ADHD adults are involved are very divergent (Bresnahan and Barry,

2002; Bresnahan et al., 2006; Clarke et al., 2008; Koehler et al.,

2009; Markovska-Simoska and Pop-Jordanova, 2010). Reason for

this may be the nature of the quantitative EEG parameters that are

analyzed, as well as the developmental nature of the disorder itself.

This is why diagnosis of the disorder in the adult population remains

dependent of the skills and the knowledge of the doctor.

Most of the methods for finding some relevant discriminators be-

tween ADHD and control groups include standard statistical tech-

niques, such as ANOVA test that are run on the data obtained from

the EEG measurements. These methods have led to consistent results

between the researchers in the studies of ADHD children and adoles-

cents, but that is not the case in the studies of ADHD adults.

A very few studies have been carried out on discriminating the

ADHD from the control groups that use machine learning techniques.

There have been studies that discriminate ADHD from control groups

by using linear classifiers with moderate accuracy (Barry et al., 2003;

Buchsbaum and Wender, 1973; Robaey et al., 1992; Satterfield and

Braley, 1977; Smith et al., 2003). Non-linear classifiers such as sup-

port vector machines and artificial neural networks have emerged

that can find non-linear relationship in the data. Mueller et al.

(2010, 2011) have introduced a machine learning system that uses

support vector machine classifier to discriminate the ADHD adults

from control groups on the base of the event related potentials that

are generated from the EEG measurements.

In this paper, we introduce a model for classification of adults

ADHD and control groups on the basis of EEG power spectra obtained

from different measurement conditions. The EEG power spectrum is

generated from the EEG signals recorded from the scalp electrodes,

and it represents the distribution of the squared amplitude of the sig-

nal along all frequency bands of the signal. The EEG signals are
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generated inside the brain as a result to the brain neuronal activity

(Sanei and Chambers, 2007). According to the frequency band at

which they are recorded they can be divided into four bands (delta,

theta, alpha and beta). Signal detection at each of these bands corre-

sponds to a specific behavior of the person. ADHD is viewed as a dis-

order of the executive system of the brain which is responsible for the

executive functions which are defined as the patient's ability to plan,

regulate and monitor his or her cognitive, emotional and motor skills

in order to achieve certain goals (Kropotov, 2008). The data we had

for analysis is obtained from four different conditions under which

the EEG measurements are taken. The conditions were visual contin-

uous performance test and emotional continuous performance test,

which give us insight into the properties of the executive system of

the patient's brain, as well as eyes open and eyes closed conditions.

The goal of our study was to build a machine learning model for dis-

criminating adults ADHD and control groups that use information

from all of the conditions under which the measurements are taken.

We want to show that we acquire more useful information by com-

bining parameter values from each condition and in that way we

can improve the discrimination between ADHD and control groups.

With four different support vector machine classifiers (one for the

data from each condition) and a simple voter that makes a final out-

put decision with combining the outputs from each of the classifiers

by voting, we present an exhaustive analysis of EEG power spectra

data and the conditions under which the data is obtained.

2. Methods

2.1. Subjects

Our analyses were made on 117 adult patients from which 67 were

diagnosed as ADHD and 50 were controls. 67 adults (between 18 and

50 years of age) diagnosed with ADHD with 50 age-matched control

subjects, participated in the study. Each group consisted of almost

equal number of females andmales: the ADHD group consisted of 33 fe-

males and 34 males (the gender imbalance noted in children has not

been established in adults with ADHD) and gender distribution in con-

trol group was 25 females and 25 males. The groups were matched on

age, with the mean age being 33.4, S.D.=8.39 years for ADHD subjects,

and 32.8, S.D.=8.22 years for the control group.

ADHD subjects were patients collected during the ADHD Project of

EU-Cost Action B27, from 2007 to 2009 until the target number was

obtained. The diagnosis was made by a psychiatrist and a psycholo-

gist, and both had to agree on the diagnosis for the subject to be in-

cluded in the study. All subjects met the DSM-IV criteria for ADHD.

In order to ensure diagnostic validity, additional information was col-

lected from parents, partners, relatives and friends. According to

DSM-IV criteria, the assessment resulted in 26 ADHD subjects being

diagnosed with the inattentive type, 4 with hyperactive-impulsive

type and 37 with combined type.

The control group was recruited through professional colleagues

and community organization fromSkopje,Macedonia. Inclusion criteria

required the control group to be free of history of ADHD or other psy-

chopathological or neurological symptomatology, assessed through

personal interview, self-report, and the DSM-IV symptom checklist for

ADHD. All subjects had normal or corrected to normal vision.

2.2. Procedure

All participants were individually assessed with neurophysiological

testing in an environment free from distractions, in a single session

that lasted approximately 1.5 h, during office hours (8:00–15:00 h).

The study was approved by the local ethics committee and written in-

formed consent was obtained from all participants after an explanation

of the procedure.

Subjects were not allowed to take any medication in the 48-hour-

period prior to testing and were asked not to use caffeine or tobacco

on the morning of their testing. All subjects were seated in a comfort-

able chair with a backrest and were instructed not to move their eyes

during the recording. Recording was suspended for a short period if

the subject was found to be experiencing drowsiness or becoming rest-

less. The EEG was recorded using a Mitsar 19-channel QEEG system in

the following conditions:

1. 5 min eyes closed (EC) resting condition;

2. 5 min eyes open (EO) resting condition (sufficient for 2 min artifact-

free data EC and EO);

3. Visual continuous performance test — VCPT from Psytask

(two-stimulus Go/NoGo paradigm) with 20 min duration;

4. Emotional continuous performance test — ECPT from Psytask (two-

stimulus Go/NoGo paradigm) with 20 min duration.

EEG electrode placement was in accordance with the international

10/20 system using an electrocap produced by Electrocap interna-

tional. Activity in 19 derivations was recorded from Fp1, Fp2, F3, F4,

F7, F8, Fz, C3, C4, Cz, T3, T4, T5, T6, P3, P4, Pz, O1 and O2, referenced

to linked ears. The ground electrode was placed between Fpz and

Fz. To control eye movement artifacts, the electrooculogram (EOG)

was recorded, using two 9 mm tin electrodes, above and under the

right eye, referenced to Fpz and Oz. The EOG rejection was set at

50 μV. The bandwidth of the amplifiers was set at 0.53 Hz for low fre-

quency filter, 50 Hz for high frequency filter and 45–55 Hz notch fil-

ter. The EEG digitization frequency was 256 Hz. The impedance levels

for all electrodes were set to 5 kΩ. EEG was continuously recorded on

the hard disc for off-line analysis. The VCPT and ECPT were adminis-

tered using the standard protocol. The authors also visually appraised

every epoch and decided to accept or reject it, based on the absence

or presence of artifact. EEG data was processed with theWinEEG soft-

ware version 2.82.32 (St. Petersburg, Russia). Spectral analysis using

fast Fourier transform was carried out for four frequency bands,

Delta (0.5–4 Hz), Theta (4–8 Hz), Alpha (8–12Hz), Beta (12–30 Hz),

for absolute power (μV2). The transformed data were analyzed sepa-

rately for each subject, frequency band, and measurement condition.

Also, all individual spectra's of ADHD subjectswere analyzed by the sec-

ond author and were compared with the HBI (Human Brain Index) da-

tabase. According to the Kropotov's classification (Kropotov, 2008),

ADHD subjects were divided in four subtypes: QEEG subtype I— 13 pa-

tients (19.4%), QEEG subtype II— 14 patients (20.9%), QEEG subtype III

— 16 patients (23.9%) and QEEG subtype IV — 24 patients (35.8%).

2.3. VCPT and ECPT tasks

We used the two-stimulus CPT tasks (GO/NOGO tasks) developed

specifically for the Psytask software of Mitsar system. In this study we

used these tasks to assess the power spectra during a mental task,

compared to the resting states in EC and EO conditions.

The task consisted of 400 trials. The duration of the stimuli is equal

to 100 ms. Trials consisted of presentation of a pair of stimuli with

inter stimulus interval of 1.1 s. The interval between the trials is

equal to 3100 ms and the response interval from 100 to 1000 ms.

Subjects were instructed to press a button with index finger of their

right hand as fast as possible every time when animal or angry face

was followed by an animal or angry face (Go-condition), respectively,

and to withhold the suppressing on the other three trials (No-Go con-

dition). Pictures were presented in a pseudo randomized order in the

center of a computer monitor placed 100 cm from the subjects' eyes.

Before each session, the test was explained to the subject in details

and 10–20 training tasks were performed. Accuracy and speed were

encouraged.

More detailed explanation of the VCPT and ECPT tasks can be

found in the study of Markovska-Simoska and Pop-Jordanova (2009).
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2.4. Support vector machine (SVM)

Support vector machine is a method for supervised learning that is

used for classification or regression analysis. That means, given an

input data sample, in which each data point is marked as belonging to

one of the two possible groups or classes, the SVM builds a model

which is then used for classifying newdata points to one of the two clas-

ses. This approach is non-probabilistic because instead of using the

probability distribution of data points for discrimination, it uses the spa-

tial and geometric properties of the data points. The SVMmodel repre-

sents the data points in space so that the points that belong to separate

classes are divided by a gap that is as wide as possible. This gap, also

called margin, is modeled with the boundaries of a hyperplane in the

multidimensional space in which the points are distributed. The posi-

tioning of the hyperplane depends on the closest data points which

are called support vectors. The only problem here is that this is true

for linearly separable data. Most of the time, input data is not linearly

separable in its original input space. To overcome this problem, SVM al-

gorithmuses kernel functions. The trickwith the kernel functions is that

these functions are nonlinear functions which map the data points to

another, higher dimensional space inwhich these points can be linearly

separable. This makes the SVM classifier a nonlinear classifier. There are

different types of kernels. In our analysis we used the radial basis func-

tion kernel.

In our study, the input data sample represents the patients. Each

data point in the data sample represents a patient who belongs to one

of the two classes (ADHD or normal). The dimension of the input

space depends on the attributes or features associated with each data

point (for example, ifwe have potentials from19 electrodes, the dimen-

sion of our input space is 19). Using the kernel function, we map our

input space to higher dimensional space where the data can be linearly

separable and SVM algorithm can be implemented.

2.5. Model

The model we applied is shown on Fig. 1. We divided the data

from the EEG measurements for each of the four conditions separate-

ly. Note that with splitting the data, we do not reduce the number of

patients in the original data set. The number of patients in all data sets

is equal. With splitting the data, we mean splitting the attributes that

correspond to each condition. In the original data set, each patient has

the attributes (electrode values) from the measurements taken in all

conditions. In the ECPT data set, the patient has only the attributes

that are obtained from the ECPT condition, and the same is for the

others data sets shown in Fig. 1. We did this because it is reasonable

to think that during different tasks or conditions under which the

measurements are taken, the arousal level is different and the propa-

gation of EEG activity changes. Therefore, the EEG measures differ in

topography, as well as in power levels (Barry et al., 2007). With this

approach, the results we get are based on the combined knowledge

that we get from the condition-dependent EEG information.

2.5.1. Preprocessing

Each of the classifiers is trained with the corresponding data set.

Because the set of features we obtained from the EEG measurements

is large (values from all 19 electrodes in all bands), it is good practice

to reduce this set and feed the classifier with the most appropriate

subset of these features, therefore reducing complexity and dimen-

sionality (part A from Fig. 1). For each SVM classifier (shown in

Fig. 1), we applied the forward selection scheme to choose the best

attributes or features that correspond to the selected classifier. For-

ward selection scheme is an algorithm that iteratively selects subset

of features from a set of features, such that the subset of features it

chooses is most relevant to the discrimination of the data. Applying

this technique to each classifier that corresponds to a different condi-

tion, we obtain the features that represent the most relevant discrim-

ination of the data in the corresponding condition.

2.5.2. Classifier training

After selecting the relevant features for each data set, the data sets

are feed to the SVM classifiers and the models are built. For generali-

zation of each classifier model we used 10 fold cross-validations.

Cross-validation is technique that tells us how the classifier model

we have chosen will generalize to an independent data set that is dif-

ferent than the one we have trained the model with (Arlot and

Celisse, 2010). It partitions the data into n complementary subsets

and uses n-1 of the subsets for training the model, and the remaining

set for testing the model. This procedure is repeated n times so that

each of the subsets is used exactly once as a testing set. The results

are than averaged over the rounds to get the final estimation.

2.5.3. Voter

The next part of our model is the voter (part B from Fig. 1). The

voter is defined as a logical or Boolean algebra expression and it de-

pends on four input variables. As it can be seen from the Fig. 1,

these input variables are the classifiers outputs. Note that the outputs

Fig. 1. Illustration of the model. A) The preprocessed data sets with the corresponding attributes are inputs to the corresponding SVM classifiers. B) Then, SVM classifiers are trained,

and the output from each classifier is input to the voter. C) The voter makes the final decision, and the output of the voter represents the final class which is given to the correspond-

ing patient.
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of the classifiers are binary values because we have binary classifica-

tion problem. Namely, 1 represents the ADHD group and 0 represents

the Normal group. Because of this fact, we define our voter as a logical

expression, otherwise it is pointless. We analytically derived the ex-

pression from Karnaugh map that represents the voter function. The

Karnaugh map is a method for simplifying Boolean algebra or logical

expressions, which takes advantage of the human capability of pat-

tern recognition, instead of performing extensive calculation using

the Boolean algebra axiom laws and theorems (Karnaugh, 1953).

If we have the following Boolean equation:

f A;B;C;Dð Þ ¼ A′BC′D′ð Þ þ A′BC′Dð Þ þ A′BCDð Þ þ ABC′D′ð Þ þ ABC′Dð Þ
þ ABCDð Þ: ð1Þ

The notation A represents the complement of A. For example, if

A=0, then A=1 and if A=1, then A=0. The same is for other vari-

ables. Note that in the previous equation the sign ‘+’ represents the

logical OR operator, and the multiplication represents the logical

AND operator. This function is not simplified and to simplify it, one

can use the Karnough map method as mentioned before. It is worth

mentioning here that we do not reduce complexity with simplifying

the logical expression. For the previous unsimplified logical expres-

sion, the simplified expression is:

f A;B;C;Dð Þ ¼ BC′þ BD: ð2Þ

As it can be seen, the simplified expression has less logical opera-

tions than the original unsimplified expression, but still produces that

same final result for the given combination of input variables. What is

significant here is that we can see the impact each of the variables has

on the final result. In our example, after the simplification of the expres-

sion, we can see that variable A does not have impact on the result. The

result depends only on variables B, C and D. This information we get

from our voter is crucial because the input variables in our voter are

the classifiers for each condition and we can see which condition has

impact in our discrimination and which has not.

The idea behind the standard voter function of four variables is

simple. The function output is 1 if there are more ones in the input

variables (three or four input variables have the value 1), and the out-

put is 0 if the zeros dominate among the input variables. When the

number of ones and zeros is equal, the output is undefined.

In our model, the input variables represent the classifiers output.

We can use the knowledge we have to replace the undefined outputs

from our function with 1 or 0. We do this by using the information we

have about the performance of each classifier. So, instead of counting

the ones and zeros, we can compute the average performance of the

classifiers and assign the voter function value of 1, if the average per-

formance of the classifiers that have output of 1 is bigger than the av-

erage performance of the classifiers that have output of 0, or assign

value of 0 when the performance of classifiers that have output of 1

is less than the performance of classifiers that have output of 0.

3. Results and discussion

The results we got from applying our model to power spectra data

are shown in Table 1.

From the results we can see that the voter improves the classifica-

tion, therefore we truly acquire more information with combining con-

ditions, then analyzing each condition separately. We also applied the

model to discriminate between ADHD II and ADHD III subgroups, and

ADHD III and ADHD IV. We choose this combination, because the num-

ber of patients in these groups is almost equal. It can be seen that the

classification between the subgroups is much better compared to the

classification of ADHD and normal groups. This is because of ADHD sub-

groups being more homogeneous than ADHD and normal groups. If

someone has breathing problems, it can be because he or she has

weak heart, or lungs problem. The symptom is the same, but the prob-

lem that caused the symptom is different and should be treated differ-

ent. The ADHD subtypes should be seen as different aspects of ADHD.

Each of the subtypes has different characteristics that are represented

by corresponding brain activity. Therefore, the EEG power spectrum is

more homogeneous for the subtypes.

In conclusion, in this paper we have presented a novel model for

discriminating adults ADHD and control groups based on machine

learning techniques. The voter, which has been implemented as a log-

ical expression, improves the classification performance by combin-

ing the knowledge from the different conditions under which the

EEG measurements were obtained. In this way, the final result de-

pends on the impact that different conditions have on the patient

data. For future research, the model presented in this work can be ex-

panded by exploring other, in particular non-spectral characteristics

of EEG data for analyzing neurophysiological disorders. Using simple

logical expression, we can inference results that not only contain

the knowledge from the different conditions, but also from different

QEEG parameters. This approach could be very useful from medical

point of view, because such models can be applied to any neurophys-

iological disease or disorder, and for every disorder and disease we

can find the combinations of QEEG parameters and conditions with

the largest impact on the results.
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