Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/14065
DC FieldValueLanguage
dc.contributor.authorPonciano, Vascoen_US
dc.contributor.authorPires, Ivan Miguelen_US
dc.contributor.authorRibeiro, Fernando Reinaldoen_US
dc.contributor.authorMarques, Gonçaloen_US
dc.contributor.authorVillasana, Maria Vanessaen_US
dc.contributor.authorGarcia, Nuno M.en_US
dc.contributor.authorZdravevski, Eftimen_US
dc.contributor.authorSpinsante, Susannaen_US
dc.date.accessioned2021-07-06T14:04:06Z-
dc.date.available2021-07-06T14:04:06Z-
dc.date.issued2020-05-08-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/14065-
dc.description.abstract<jats:p>Inertial sensors are commonly embedded in several devices, including smartphones, and other specific devices. This type of sensors may be used for different purposes, including the recognition of different diseases. Several studies are focused on the use of accelerometer signals for the automatic recognition of different diseases, and it may empower the different treatments with the use of less invasive and painful techniques for patients. This paper aims to provide a systematic review of the studies available in the literature for the automatic recognition of different diseases by exploiting accelerometer sensors. The most reliably detectable disease using accelerometer sensors, available in 54% of the analyzed studies, is the Parkinson’s disease. The machine learning methods implemented for the automatic recognition of Parkinson’s disease reported an accuracy of 94%. The recognition of other diseases is investigated in a few other papers, and it appears to be the target of further analysis in the future.</jats:p>en_US
dc.language.isoenen_US
dc.publisherMDPI AGen_US
dc.relation.ispartofElectronicsen_US
dc.titleIdentification of Diseases Based on the Use of Inertial Sensors: A Systematic Reviewen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.3390/electronics9050778-
dc.identifier.urlhttps://www.mdpi.com/2079-9292/9/5/778/pdf-
dc.identifier.volume9-
dc.identifier.issue5-
item.grantfulltextopen-
item.fulltextWith Fulltext-
crisitem.author.deptFaculty of Computer Science and Engineering-
Appears in Collections:Faculty of Computer Science and Engineering: Journal Articles
Прикажи едноставен запис

Page view(s)

71
checked on 20.7.2025

Download(s)

18
checked on 20.7.2025

Google ScholarTM

Проверете

Altmetric


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.