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Abstract: Inertial sensors are commonly embedded in several devices, including smartphones, and 

other specific devices. This type of sensors may be used for different purposes, including the 

recognition of different diseases. Several studies are focused on the use of accelerometer signals for 

the automatic recognition of different diseases, and it may empower the different treatments with 

the use of less invasive and painful techniques for patients. This paper aims to provide a systematic 

review of the studies available in the literature for the automatic recognition of different diseases by 

exploiting accelerometer sensors. The most reliably detectable disease using accelerometer sensors, 

available in 54% of the analyzed studies, is the Parkinson’s disease. The machine learning methods 

implemented for the automatic recognition of Parkinson’s disease reported an accuracy of 94%. The 

recognition of other diseases is investigated in a few other papers, and it appears to be the target of 

further analysis in the future. 

Keywords: Accelerometer; Wearable electronic devices; Diseases; Monitoring; Ambulatory; 

Automatic identification; Parkinson’s disease 

 

1. Introduction 

Ageing is presently a critical challenge worldwide, which is particularly relevant in developed 

countries [1–3]. In total, 9% of the population is over 64 years old worldwide, and 10% will have 

disabilities [4,5]. Ageing will lead to relevant impacts on the economy and society, associated with 

costs in healthcare [6,7]. The scenario in Portugal is not different, as it is in the top five countries with 

older adults worldwide [8–10]. It is relevant to mention that Portugal was the country with the 

highest birth rate in Europe, 45 years ago [11,12]. However, Portugal is now at the top of the list with 

fewer births in Europe [13,14]. Accordingly, the dependency of older adults associated with a low 

birth rate will lead to even more social impacts and demands for the design and development of 

novel and efficient strategies to promote the health and well-being of citizens [15]. 
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The Ambient Assisted Living (AAL) concept includes multiple research domains to design 

improved software tools and healthcare systems for enhanced living environments [16,17]. However, 

different challenges still exist in the design of AAL technologies associated not only with the 

reception of these tools by older adults but also related to privacy and security [18–20]. 

Healthcare systems combine different software and hardware systems to provide multiple 

services not only to promote the quality of life of patients but also to support healthcare staff [21,22]. 

Personal healthcare devices are used for several telemedicine tasks using portable systems to monitor 

the patient’s physical signs [23,24]. These devices can observe distinct parameters, such as blood 

pressure, oxygen, and medication intake, but they are also used to supervise patients' behavior and 

detect falls [25,26].  

Presently, mobile devices such as smartphones and tablets include high power processing 

properties and incorporate multiple non-invasive sensors that are used to design efficient and cost-

effective healthcare solutions [27,28]. Mobile healthcare applications also support patient 

participation in their disease prevention and management and consequently contribute to relevant 

cost savings [29–31]. Moreover, mobile devices incorporate multiple short-range and long-range 

communication protocols such as GPRS (General Packet Radio Service), 3G, HSDPA (High-Speed 

Downlink Packet Access), 4G, 5G, Bluetooth, NFC (Near-field communication) and Wi-Fi. These 

communication technologies facilitate patient monitoring in hospitals, medical facilities, and in 

patient's homes [32–34]. Furthermore, wearable devices currently include the same sensors as 

smartphones and are consequently used to supervise cardio-metabolic [35], and 

electroencephalogram (EEG) signals [36], in a non-invasive manner [37–39]. To summarize, mobile 

devices must be seen today as an essential and crucial part of personalized healthcare procedures not 

only for monitoring activities but also for clinical evaluation and disease detection [40–42].  

The accelerometer, magnetometer, and gyroscope sensors incorporated in mobile devices or 

other commercial board modules are compatible with different interfaces, such as I2C, UART 

(Universal Asynchronous Receiver-Transmitter) and PWM (Pulse Wave Modulation). They can be 

applied in the context of enhanced healthcare, such as activity recognition and automatic disease 

detection [43–45]. The accelerometer is used in numerous clinical evaluation tasks, both incorporated 

in wearable-based systems or using mobile devices [46,47]. Countless people suffer from multiple 

diseases, causing a variety of consequences on their physical activity and mobility, such as postural 

instability and gait disturbances, which can lead to independence reduction and loss of movement 

[48–51]. Consequently, the use of automated processes for disease evaluation plays a significant role 

in enhanced public health. 

The cross-domain knowledge sharing combining computer science and healthcare can lead to 

the design of effective systems for enhanced personalized healthcare assessment, which can also be 

supported by artificial intelligence methods to create novel techniques for automated disease 

recognition. On the other hand, this multidisciplinary approach can provide novel solutions to face 

the worldwide challenges related to ageing and the quality of personalized healthcare [52–55]. 

This paper presents a review of state-of-the-art accelerometry-based systems and methods for 

the automatic identification of various diseases. We aim to provide a comprehensive understanding 

of the different healthcare conditions that can be recognized, monitored, and evaluated using 

accelerometry devices and artificial intelligence techniques.  

The main contribution of this paper is the synthesis of the existing body of knowledge, 

presenting the collective outcomes and limitations that must be analyzed to point out new research 

directions. Furthermore, we compare different methods and extract the most significant insights from 

the analyzed literature. As a result, this paper aims to provide a practical background not only to 

academics or computer science engineers but also to healthcare professionals. 

The structure of this document is the following: Section 2 presented the strategy used to conduct 

this systematic review and describe the research questions, and the criteria for the literature section. 

The results are shown in Section 3, and they are later discussed in Section 4. Finally, the conclusions 

are presented in Section 5. 

2. Materials and Methods 
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Systematic reviews use formal explicit methods, of what exactly was the question to be 

answered, how evidence was searched for and assessed, and how it was synthesized to reach the 

conclusion. The “Preferred reporting items for systematic reviews and meta-analyses: the PRISMA 

statement” [56] is one of the most widely used methodologies for achieving this, therefore we have 

applied it in this work. For this type of studies, it is essential that they are statistical valid with enough 

individuals in a studied population. In continuation, the diseases that can be detected with these 

sensors is important to define a method for the recognition, where the recognition differs by each 

disease. The authors have conducted a systematic review of papers published after 2008 to provide a 

comprehensive, but not limited analysis considering 12 years of studies regarding the automatic 

detection of studies using inertial sensors. Finally, the use of artificial intelligence methods is 

important for the automatic recognition and measurement, and this review intends to discover which 

as the methods used in the literature. 

2.1. Research Questions 

The primary research questions of this review were as follows: (RQ1) How many people are 

involved in the different studies related to the use of the inertial sensors? (RQ2) Which diseases can 

be detected with inertial sensors? (RQ3) Which artificial intelligence methods are used for the 

identification or recognition of different diseases? 

2.2. Inclusion Criteria 

The inclusion criteria of studies and assessing methods for the automatic identification of 

various diseases using the accelerometer sensor were: (1) Studies that perform recognition of diseases 

related to the movement; (2) Studies that use at least an accelerometer sensor; (3) Studies that were 

published between 2008 and 2020; (4) Studies that defined the number of participants; (5) Studies 

written in English. 

2.3. Search Strategy 

The team searched for studies meeting the inclusion criteria in the following electronic 

databases: IEEE Xplore, ACM Digital Library, ScienceDirect, MEDLINE, and PubMed. The research 

terms used to identify relevant articles for this systematic review are: “diseases”, “accelerometer”, 

and “automatic identification” or “automatic recognition”. Initially, we employed a tool that 

leverages Natural Language Processing algorithms [57] to remove duplicate articles and narrow 

down the potentially relevant articles. Afterwards, five reviewers independently evaluated every 

study, and its suitability was determined with the agreement of all parties. The studies were 

examined to identify the different diseases that can be identified with the use of data acquired from 

the accelerometer sensor. 

2.4. Extraction of Study Characteristics 

The following information was extracted from various articles analyzed and presented in Tables 

1 and 2: year of publication, population, purpose, sensors used, diseases detected, accuracy, and 

outcomes of the different studies. The corresponding authors of the various papers were contacted 

to obtain more information about the different studies. We evaluated the identified studies based on 

the qualities related to the research questions, considering the number of participants (an explicit 

number should be stated in the study), the sensory devices (also need to be explicitly mentioned), 

which diseases are being automatically identified, and which artificial intelligence algorithms were 

applied for automatic recognition of the disease. Based on these parameters, the studies’ quality was 

assessed. In general, the most detected disease is Parkinson's disease and other diseases related to the 

various walking patterns. 

Table 1. Study analysis. 
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Paper Year of 

Publication 

Population Purpose of the 

Study 

Sensors Diseases 

Detected 

Accuracy 

Viteckova et 

al. [58] 

2020 26 healthy 

adults and 25 

subjects with 

Parkinson’s 

disease 

Compare and 

quantify the 

results of 

repeated 

performance 

over time and 

the 

performance 

of healthy and 

sick people 

with 

Parkinson's 

disease 

Accelerometer 

and 

Gyroscope 

Parkinson N/A 

 

Sharif 

Bidabadi et 

al. [59] 

2019 30 healthy 

subjects and 

56 patients 

with Lumbar 

radiculopathy 

and related 

ankle 

dorsiflexion 

weakness with 

observable 

foot drop 

Use of inertial 

measurement 

unit using 

machine 

learning 

methods to 

distinguish 

gait 

disturbances 

Accelerometer, 

Gyroscope, 

and 

Magnetometer 

Lumbar 

radiculopathy 

and related to 

ankle 

dorsiflexion 

weakness with 

observable 

foot drop 

93.18% 

Stamate et 

al. [60] 

2018 22 individuals 

with 

Parkinson’s 

disease 

Develop an 

application to 

create an 

extensive data 

set of motor 

characteristics 

of individuals 

with 

Parkinson's 

disease 

Accelerometer Parkinson 95% 

Joshi et al. 

[61] 

2017 15 patients 

with 

Parkinson’s 

disease and 16 

healthy 

control 

subjects 

Method to 

analyze gait 

variables for 

Parkinson's 

patients 

Accelerometer Parkinson 90.32% 

Ribeiro et al. 

[62] 

2016 Five 

volunteers 

with recent 

episodes of 

Epilepsy 

Development 

of a technique 

using machine 

learning, to 

automatically 

recognize 

people with 

epilepsy 

Accelerometer Epilepsy 99% 

Djuric-

Jovicic et al. 

[63] 

2014 12 patients 

with 

idiopathic 

Parkinson’s 

disease 

Method for the 

detection of 

walking 

disorders for 

people with 

Parkinson 

Accelerometer 

and 

Gyroscope 

Parkinson 98.55% 
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Paper Year of 

Publication 

Population Purpose of the 

Study 

Sensors Diseases 

Detected 

Accuracy 

Gruenerbl et 

al. [64] 

2014 12 bipolar 

disorder 

patients 

Demonstrate 

how 

smartphones 

can be used to 

aid the 

diagnosis of 

people with 

psychiatric 

disorders 

Accelerometer 

and GPS 

receiver 

Bipolar 80% 

Pendharkar 

et al. [65] 

2014 Ten children 

with 

idiopathic toe 

walkers and 

ten children 

with a normal 

gait 

Automated 

classification 

of heel 

accelerometer 

data 

Accelerometer Idiopathic Toe 

Walkers 

97.9% 

Kugler et al. 

[66] 

2013 Five healthy 

adults and five 

subjects with 

Parkinson's 

disease 

Make an 

automatic 

classification 

between 

healthy 

individuals 

and people 

with 

Parkinson's 

disease using 

walking 

electromyogra

phy 

Accelerometer 

and 

electromyogra

phy (EMG) 

sensor 

Parkinson N/A 

Barth et al. 

[67] 

2012 17 healthy 

adults and 18 

subjects with 

Parkinson’s 

disease 

System to 

analyze the 

motor function 

of the hand 

and to walk to 

differentiate 

healthy people 

and people 

with 

Parkinson's 

disease 

Accelerometer 

and 

Gyroscope 

Parkinson 97% 

Alaqtash et 

al. [68] 

2011 Ten healthy 

adults and 

four relapsing-

remitting 

multiple 

sclerosis 

patients 

Wearable 

system for the 

acquisition of 

gait 

parameters 

Accelerometer Multiple 

Sclerosis 

N/A 

Phan et al. 

[69] 

2008 30 subjects 

with recent 

symptoms of 

arrhythmia or 

sleep apnea 

Accelerometer 

system to 

compare 

efficiency in 

detecting heart 

disease, 

compared to 

traditionally 

used tools 

Accelerometer 

and 

electrocardiog

raphy (ECG) 

sensor 

Arrhythmia or 

sleep apnea 

N/A 
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Paper Year of 

Publication 

Population Purpose of the 

Study 

Sensors Diseases 

Detected 

Accuracy 

Garcia Ruiz 

et al. [70] 

2008 28 patients 

with 

idiopathic 

Parkinson’s 

disease 

Analysis of the 

utility and 

correlation of 

Active 

Appearance 

Model (AAM) 

with timed 

tests and 

Unified 

Parkinson's 

Disease Rating 

Scale (UPDRS) 

scores with 

people with 

Parkinson's 

disease 

Accelerometer Parkinson N/A 

Table 2. Study outcomes. 

Paper Outcomes 

Viteckova et 

al. [58] 

The authors intended to use the instrumented Timed-Up and Go test, repeatedly in young adults 

and people with Parkinson's disease to make comparisons and test the efficiency of the method. 

Various related features were calculated, with the test time and the other parameters related to 

walking and angular velocity. An Xbus Mater was used for data acquisition, which includes 5 

accelerometers with a sampling rate of 100 Hz. 

Sharif 

Bidabadi et 

al. [59] 

The study aimed to investigate disorders related to falls in people with low back problems and 

used machine learning algorithms. Machine learning was implemented to use an accelerometer to 

acquire data. The results showed that the performance was better with the use of the three 

classifiers Random Forest, Support Vector Machine (SVM), and Naive Bayes. In contrast, when the 

wrapper feature technique was used, the highest accuracy was 93.18% with the Random Forest 

classifier. The accelerometer used is a three-axis accelerometer to measure the different directions 

of movement. 

Stamate et 

al. [60] 

A cloud application called Unified Parkinson's Disease Rating Scale (UPDRS) was presented as a 

tool for people with Parkinson's disease. The system features a workflow compatible with various 

formats of audio, video, and text media. It consists of an Android application for testing, a cloud 

system for saving data, and a data mining tool kit for medical intelligence that incorporates 

quantitative data and semi-structured and longitudinal analyzes, groupings, and classifications. 

The data was acquired by the accelerometer embedded in 9 different phone models with a 

sampling rate of 50 Hz. 

Joshi et al. 

[61] 

The authors implemented a wavelet analysis method combined with the SVM method for 

Parkinson's patients. Various parameters related to walking were calculated, namely stride 

interval, swing interval, and stance interval (from both legs). The results showed an accuracy of 

90.32%. The data was acquired by a three-axis accelerometer with specificity of 93.75%. 

Ribeiro et 

al. [62] 

The study used machine learning methods for the automatic recognition of people with epilepsy. 

Five machine learning methods were used to determine the most efficient among Naive Bayes, k-

Nearest Neighbors (kNN), C4.5, Support Vector Machine (SVM), and Decision Tree-based-method 

(PART). The results showed that kNN had the highest computational cost, and PART and C4.5 had 

the lowest. Furthermore, the sensor used by the system was a three-axis accelerometer.  

Djuric-

Jovicic et al. 

[63] 

The authors presented a method to identify the problem of falls in people with Parkinson's disease. 

Several types of stride were considered, and some features (namely Shank Movement 

Displacement, stride duration, and shank transversal orientation) were calculated. The results 

showed the highest performance of the algorithm was achieved when using a type of FOG stride 

with 100% accuracy. The data was acquired by a three-axis accelerometer with a minimum 

specificity of 87.8%. 
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Paper Outcomes 

Gruenerbl 

et al. [64] 

The authors intended to use smartphones to help diagnose people with mental disorders such as 

depression and bipolar disorder. Inertial sensors and Global Positioning System (GPS) traces were 

used in the developed system. The results showed an accuracy level of 80%. The accelerometer 

used has a fixed sampling rate of 5Hz. 

Pendharkar 

et al. [65] 

The authors presented a method called Idiopathic Toe-Walking (ITW) to detect walking problems 

in children. The sensor used in this system was the accelerometer, with the two signals of horizontal 

and vertical acceleration decomposed to avoid overlap. The results showed that Blind Source 

Separation (BSS) techniques combined with a K-means classifier could distinguish gait from foot 

to normal pace in children with ITW with an accuracy of 97.9%. The sensor used is a dual-axis 

accelerometer. 

Kugler et al. 

[66] 

The authors presented a method of automatic recognition of people with Parkinson's disease. An 

accelerometer and an electromyography sensor were used to recognize and validate the walking 

parameters. When cross-validation to leave a subject out was used, the sensitivity and specificity 

values were the highest at 0.90, the best-rated features were the kurtosis and the mean frequency, 

and the best features had a significant difference in kurtosis of (p = 0.013). The authors used a three-

axis accelerometer with a specificity of 90%. 

Barth et al. 

[67] 

The study featured a combined hand and leg analysis system for recognizing people with 

Parkinson's disease. Pressure sensors were used in conjunction with the accelerometer to analyze 

the hand. Moreover, gyroscope and accelerometer sensors were used to analyze the foot. The 

results were crossed between healthy individuals and people with Parkinson's disease, showing 

that when the AdaBoost classifier was used, the efficiency of the system reached 97%. These 

authors used a three-axis accelerometer, reporting a specificity between 88% and 100%. 

Alaqtash et 

al. [68] 

The authors presented a wearable sensor system for the acquisition of parameters related to 

walking by using a fuzzy computational algorithm, with healthy individuals and a group of 

patients with multiple sclerosis. The results showed that this system could be beneficial for the 

identification of problems related to walking showing the differences between healthy people and 

people with multiple sclerosis. This experiment used a dual-belt instrumented treadmill, which 

includes several three-axis accelerometers. 

Phan et al. 

[69] 

A system using the accelerometer was presented to detect diseases of the respiratory system and 

the heart. The system was positioned on the chest by using a belt. The study compared the use of 

traditional sensors such as an electrocardiogram (ECG) with a system implemented using an 

accelerometer. The results showed that the system provided identical results when the heart rate 

graph with the QRS complex was presented. This experiment considered the use of dual-axis 

accelerometer with high sensitivity. 

Garcia Ruiz 

et al. [70] 

The authors presented a method called ActiTrac for people with Parkinson's disease. The technique 

had the right level of efficiency in observing the motor part of the subjects participating in the 

study. The results showed that the mean activity significantly correlated with the total and the 

motor UPDRS scores. The accelerometer embedded in the ActiTrac device is a three-axis 

accelerometer. 

3. Results 

As presented in Figure 1, our review identified 98 papers that included one duplicate, which 

was removed. The remaining 97 studies were evaluated in terms of title, abstract, and keywords, 

resulting in the exclusion of 50 citations. The main criteria for excluding the papers were because 50 

articles were not related to automatic recognition/identification of diseases with the accelerometer 

sensor. The full-text evaluation of the remaining 47 papers was performed, excluding 34 items that 

did not match the defined inclusion criteria. The excluded articles were not focused on automatic 

recognition of diseases by using accelerometer sensors, or because the diseases cannot be identified 

only with the accelerometer. As the focus of this study consists of the recognition of diseases related 

to the accelerometer sensor, i.e., diseases related to the movement, these articles must be excluded. 

The remaining 13 studies were presented in the qualitative and quantitative synthesis. In summary, 

our review examined 13 research articles. 
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Figure 1. Flow diagram of identification and inclusion of papers. 

After the analysis, the different research works are presented in Tables 1 and 2. For a more 

detailed analysis, the authors have also analyzed the year of each study and the location of the 

authors involved in the research. Also, the original studies are cited to obtain more detailed 

information. As shown in Tables 1 and 2, we analyzed the studies that provided an automatic 

recognition of the different diseases in studies that uses the accelerometer sensor. The studies 

analyzed were published between 2008 and 2020 with three studies in 2014 (23%), two studies (15%) 

in 2008 and 2018, and one study (7%) in 2011, 2012, 2013, 2016, 2017, 2019, and 2020, as presented in 

Figure 2. 

 

Figure 2. Distribution of the studies by different years of publication. 
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On average, the different studies considered the data acquired by a different number of people 

between 5 and 85 persons (27 ± 22 individuals), where the higher number of individuals increases the 

reliability of the study. The sensors used were studied, verifying that all searched items used the 

accelerometer sensors. Also, other studies combined the use of the gyroscope sensor (31%), the 

magnetometer sensor (8%), the GPS receiver (8%), the electromyography (EMG) sensor (8%), and the 

electrocardiography (ECG) sensor (8%). Finally, Parkinson's disease is the most detected disease with 

the accelerometer sensor, which was recognized in seven studies (54%). The remaining disorders are 

only identified in one study each: lumbar radiculopathy and related ankle dorsiflexion weakness 

with observable foot drop, epilepsy disease, bipolar disorder, idiopathic toe walkers, multiple 

sclerosis, arrhythmia, and sleep apnea. In general, the accuracies reported are reliable, reporting 94% 

accuracy (on average), but four studies (31%) did not present the accuracy of the recognition. Only 

two studies considered the use of dual-axis accelerometer (15%), where the remaining studies are 

using three-axis accelerometer (85%), because this type of sensors is the most common in the different 

devices. 

The remaining results are categorized by the recognition of the different diseases, considering 

the detection of Parkinson's disease (subsection 3.1), and other diseases (subsection 3.2), because the 

other healthcare diseases recognized are residual. 

3.1. Parkinson’s Disease 

The authors [58] presented the repeated use of instrumented Timed Up and Go test in adults 

and patients with Parkinson's under different conditions using accelerometer data. Multiple features 

have been calculated over the different experiences including total time, gait sub-component, peak, 

the velocity of arm swing, range of motion of arm swing, arm swing asymmetry, cadence, gait cycle 

time, double support, stride length, stride velocity, stride time variability, stride length variability, 

peak trunk rotation velocity, trunk rotation, range of motion, turn sub-component, average turning 

velocity, peak turning velocity, sit-to-stand sub-component, average, trunk velocity, peak trunk 

velocity, duration, and trunk inclination. 

The authors [60] developed an application for evaluating people with Parkinson's disease. The 

system consists of three different elements, such as an Android application for capturing sensor data, 

iCloud-based technologies to store the data, and data mining techniques to obtain a better analysis 

of the captured data. Different parameters were analyzed during the experiments, including rest 

tremor, postural tremor, action tremor pronation-supination movements leg agility, finger tapping, 

and gait. 

The authors [61] proposed a non-invasive method for classifying Parkinson’s disease. Using 

wavelet analysis combined with the Support Vector Machine (SVM), this method has a high accuracy 

value. Several walking parameters were analyzed, namely stride interval, swing interval, and stance 

interval (from both legs). The study presents some limitations that were identified in the realization 

of the experiments, among which the group of people chosen did not have the same age range, the 

same range of weights and types, which may have influenced the results. On the other hand, as the 

gait rhythm was calculated based on a portable system, other parameters of walking analysis could 

be added, and different frequencies, which may have influenced the level of accuracy presented. 

Another limitation identified by the study's authors was the level of correlation between gait features, 

and the inertial unit of measurement (IMU) may be implemented in the future in Parkinson's or 

healthy individuals with the advantage of avoiding the lack of gait cycles. The Force Sensor data 

obtained the data in low sampling, but it did not achieve the high precision rate required in a study 

of this type. 

The authors [63] presented an algorithm for the detection and classification of disorders during 

gait in people with Parkinson's disease. These types of disorders are classified as difficult to detect. 

The algorithm separates normal and abnormal gait using the statistical method of Pearson's 

correlation. The data processing features several types of stride, including normal, short minus, short 

plus, freezing of gait (FOG) with tremor, FOG minus, and FOG with complete block engine. In 

general, they were being identified in 100% of the experiences of individuals with Parkinson's 
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disease, namely 95% in Normal FOG and a minimum of 78% in Short FOG. Different types of 

classifications are presented for the performance of the algorithm related to sensitivity, specificity, 

accuracy, and precision, with the stride of the FOG type reported the best score of 100% in all 

parameters. Some other features are extracted such as Shank Movement Displacement, Stride 

Duration, and Shank Transversal Orientation.  

The authors [66] presented a method to assist in the monitoring and progression of patients with 

Parkinson's, using the accelerometer and electromyography as sensors for data extraction. The 

control group used to carry out the experiments consisted of elements with Parkinson's disease and 

healthy, to validate the results of the study, and prove the effectiveness in detecting the disease. The 

electrodes were positioned bilaterally on anterior tibialis and gastrocnemius medialis and lateralis, 

while accelerometers on both heels and were used to segment the steps. Features of the Statistical and 

frequency type were extracted and then used to train the SVM classifier and automatic recognition 

of the disease. The results show that the best features were kurtosis and mean frequency, with a 

marked difference in the case of kurtosis that sensitivity and specificity were higher up to 0.90 using 

leave-one-subject-out cross-validation.  

The authors [67] presented a combined analysis method for people with Parkinson's disease. 

The accelerometer, gyroscope, and pressure sensors were positioned at the patient's hand to acquire 

parameters related to gait. Several features of the signal sequence type were used, including mean, 

variance, regression line gradient, the standard deviation of minima, maxima minima difference, 

autocorrelation maximum, integral, and root mean square. Also, features related to frequency 

analysis were used, including dominant frequency, energy ratio, energy in the frequency band, and 

regression line of widowed energy in the frequency band. Moreover, the features related to step 

features were extracted, including the falling gradient of the stance phase. The results show an 

accuracy level of 97% in the combined analysis. On the other hand, it shows an accuracy of 89% in 

isolation and 91% in the gait analysis.  

The authors [70] presented a system called ActiTrac for patients with Parkinson's to validate the 

classification of ambulatory activity monitor. Also, devices with accelerometers were used to record 

the strength of the muscles and the accelerations in position changes. The results obtained show 

reliability when correlated with Unified Parkinson's Disease Rating Scale (UPDRS) rigidity and 

bradykinesia subscores. Still, it does not show reliable results with the presence of tremor subscores. 

The Perdue Pegboard test, finger dexterity, and walking test are correlated with the duration of 

illness, but it is associated not with the clinical stage. 

3.2. Other Diseases 

The authors [59] presented a method to classify foot drop gait characteristics using machine 

learning algorithms in individuals with problems with lumbar radiculopathy. Different machine 

learning methods were used in this study. The ones that presented the best results in terms of 

accuracy were Random Forest, SVM, and Naive Bayes classifiers with 88.45%, 86.87%, and 86.08%, 

respectively, were applying the wrapper feature selection technique, it presents the best accuracy 

equals to 93.18%. Three inertial units of measurement (IMU) sensors were used for the acquisition of 

gait data. After that, the signal is transmitted via wireless. The sensors were positioned to the 

segments of the foot, stem, and thigh of the affected limb for patients (leg with falling foot) and the 

right leg for non-patients.  

The authors [62] presented a method of machine learning for people with epileptic problems. A 

Wearable device was used to carry out the study considering F-Score and Accuracy metrics. The 

system used an Arduino board, Bluetooth communication, and an accelerometer connected to the 

Arduino. The machine learning techniques used were k-Nearest Neighbor (kNN), Decision Tree-

based method (PART), and C4.5 Decision Tree. Still, kNN has a higher computational cost when 

compared to PART and C4.5 Decision Tree and PART a lower computational cost than C4.5 Decision 

Tree. The main objective of this work is to simplify and reduce the computational cost in recognition 

of day-to-day activities. Thus, a method was proposed to distinguish the different events of each day. 
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The authors [64] presented a study to analyze the use of smartphones in the diagnosis of people 

with mental disorders in people with bipolar disorder. The sensors used in this study were the 

accelerometer and the Global Positioning System (GPS) receiver, which obtained the following 

conclusions: patients with depression move less often, and more slowly, on the other hand, manic 

patients tend to run frequently and quickly. When we talk about travel patterns, people with this 

type of disorder travel less and with a less constant time pattern. The results show a recognition 

accuracy of 80% and a precision of 96% and a recall of 94% in recognition of state changes.  

The authors [65] presented a method for analyzing gait in children. A technique called Blind 

Source Separation is used with Idiopathic Toe Walkers (ITW) children to identify gait parameters and 

detect walking problems in children. The sensor used in this system was the accelerometer having 

decomposed the two signals of horizontal and vertical acceleration so that there was no overlap. The 

results show that Blind Source Separation (BSS) techniques together with a K-means classifier can 

distinguish gait from foot to normal pace in children with ITW. The results show an average accuracy 

of 97.9%. 

The authors [68] proposed an application with wearable sensors to analyze the walking 

parameters of healthy individuals with multiple sclerosis. An artificial intelligence algorithm called 

the fuzzy computational algorithm was applied. This algorithm was classified as being very 

promising for the health areas in helping to detect disorders related to the gait of individuals. The 

presented results did not report the classification accuracy, which is a limitation. On the other hand, 

the presented graphs allow us to perceive its efficiency as it is easily understood as the different 

results between healthy people and individuals with sclerosis. As future work, the authors present 

the possibility of developing methods that make it possible to make a quick analysis of disorders 

related to gait in individuals, efficient, low cost with more types of approaches. The accelerometer is 

the sensor used in this study, demonstrating once again the capabilities to analyze parameters related 

to acceleration force during gait. 

The authors [69] presented a system for analyzing cardiorespiratory function using the 

accelerometer coupled to the chest using a belt. The authors state that this method may be useful to 

identify some diseases. The sensor detects the acquisition of data in different states (Normal, Apnea, 

and Deep Breathing) and vertical (sitting, standing) or horizontal (lying) postures, being the signal 

compared to frequency measurements performed by the electrocardiogram. The results show the 

efficiency of using the accelerometer in the detection of respiratory waves and heart rates. Presenting 

itself as an effective method in the discovery of some heart diseases such as arrhythmia or sleep 

apprehension. 

4. Discussion 

The data acquired from the accelerometer sensors allow the development of methods for the 

identification of different healthcare conditions, namely the diseases related to movement. Based on 

the various analyzed studies, we conclude that Parkinson's disease is the most identified disease with 

the accelerometer sensors. Some other disorders are marginally researched: lumbar radiculopathy 

and related ankle dorsiflexion weakness with observable foot drop, epilepsy disease, bipolar 

disorder, idiopathic toe walkers, multiple sclerosis, arrhythmia, and sleep apnea. The accelerometer 

acquires different data related to the acceleration of the movement that allows the identification of 

abnormalities during walking activity. 

However, the accelerometer is available on different devices, including mobile devices and other 

specific types of equipment, such as the Bitalino device [71]. There are various problems related to 

the data acquisition that is mainly associated with the synchronism of the data transmission, the 

failures in the data acquisition, the sensitivity of the accelerometer used, positioning of the mobile 

device during the data acquisition, and other different hardware and software problems related to 

the devices used [72,73]. 

The accelerometer presents itself as a sensor with a multitude of uses in the acquisition of data 

related to the force and angular speed exercised by people during gait. It opens several opportunities 
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for the automatic recognition of different diseases, and, consequently, the creation of disease patterns 

[74]. 

The acquisition of data from the accelerometer sensor combined with artificial intelligence 

methods allows for the recognition of different diseases, and the work of the healthcare professionals 

will be improved. Various machine learning techniques can be used, including k-Nearest Neighbor 

(kNN), Decision Tree-based method (PART), C4.5 Decision Tree, and kNN. However, these 

techniques need high processing capabilities, and, in most of the cases, the authors only compared 

the different features extracted from the accelerometer signal without the implementation of artificial 

intelligence techniques. 

The different studies are dispersed by different countries with more incidence in Germany, the 

United Kingdom, the United States, Brazil, and Australia that concentrated more than five authors of 

the various studies (see Figure 3). 

 

Figure 3. Geographical distribution of the different studies analyzed. 

Numerous opportunities in this area have arisen, namely the detection of diseases, where the 

use of artificial intelligence methods facilitates its recognition. The use of automatic methods 

increases and speeds up the discovery of all parameters that may indicate the presence of specific 

disease and the individual's condition [55]. 

The increase in the percentage of older adults mainly in the western world and some standard 

protocols between research centers and those responsible for nursing homes has resulted in an 

increase in the number of studies to people where diseases, such as Parkinson's disease. 

Consequently, in the short term, this improves the speed of detecting this type of disorder and 

speeding up treatments. 

As future work, we intend to identify different diseases based on the performance of the Timed-

Up and Go test as the continuation of the work presented at [75,76]. The recognized disorders will be 

mainly related to the different abnormalities of movement, and other healthcare problems related to 

the lower limbs. 

5. Conclusions 

This systematic review paper presented a state-of-the-art analysis of the use of accelerometry-

based systems that have emerged for the automatic recognition of multiple diseases. The authors 

aimed to provide a comprehensive understanding of the different healthcare conditions that can be 

evaluated using accelerometry devices. Moreover, we presented an analysis of the artificial 

intelligence techniques applied and their accuracy. The analyzed articles were published between 

2008 and 2020. Most of the analyzed studies were conducted in 2014 (23%) and 2018 (15%). These 
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studies were carried out by scholars from different countries with more incidence in Germany, the 

United Kingdom, the United States of America, Brazil, and Australia. 

We analyzed 13 studies and obtained the following answers to the research questions 

considered: 

 (RQ1) How many people are involved in the different studies related to the use of the inertial sensors? The 

number of volunteers involved in the studies analyzed ranged from 5 to 85 (27 ± 22 individuals), 

where the increasing number of individuals increase the reliability of the study. 

 (RQ2) Which diseases can be detected with inertial sensors? Several diseases could be detected using 

accelerometer sensors such as Parkinson’s, lumbar radiculopathy, and the related ankle 

dorsiflexion weakness with a noticeable foot drop, epilepsy, bipolar disorder, idiopathic toe 

walkers, multiple sclerosis, arrhythmia, and sleep apnea.  

 (RQ3) Which artificial intelligence methods are used for the identification or recognition of different 

diseases? The artificial intelligence methods used for disease identification are Random Forest, 

SVM, Naive Bayes, kNN, C4.5, PART, and BSS, and K-means. 

Furthermore, we concluded that the data from other sensors such as gyroscope, magnetometers, 

GPS receivers, EMG, and ECG were combined with the accelerometer data to identify multiple 

diseases. Parkinson's disease was the most studied disease using accelerometer sensors, representing 

54% of the analyzed papers. Additionally, the average accuracy reported by the studies using 

artificial intelligence methods was 94% (on average). 

In conclusion, multidisciplinary approaches creating a synergy between computer science and 

medical sciences can lead to the design of effective architectures that improve the processes related 

to the identification of different diseases. These architectures can incorporate artificial intelligence 

methods to create novel techniques for automated disease recognition and provide enhanced 

personalized health solutions to face the overall concern of healthcare in older adults and address the 

global ageing challenge. 
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