Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12188/3261
Title: Boundary values of holomorphic functions and heat kernel method in translation-invariant distribution spaces
Authors: Pavel Dimovski
Stevan Pilipovic
Jasson Vindas
Keywords: Mathematics - Functional Analysis
Mathematics - Functional Analysis
Mathematics - Complex Variables
46F20, 46F15, 32A40
Issue Date: 20-Jul-2015
Publisher: Informa UK Limited
Journal: Complex Var. Elliptic Equ. 60 (2015), 1169-1189
Abstract: We study boundary values of holomorphic functions in translation-invariant distribution spaces of type $\mathcal{D}'_{E'_{\ast}}$. New edge of the wedge theorems are obtained. The results are then applied to represent $\mathcal{D}'_{E'_{\ast}}$ as a quotient space of holomorphic functions. We also give representations of elements of $\mathcal{D}'_{E'_{\ast}}$ via the heat kernel method. Our results cover as particular instances the cases of boundary values, analytic representations, and heat kernel representations in the context of the Schwartz spaces $\mathcal{D}'_{L^{p}}$, $\mathcal{B}'$, and their weighted versions.
URI: http://hdl.handle.net/20.500.12188/3261
DOI: 10.1080/17476933.2014.1002399
Appears in Collections:Faculty of Technology and Metallurgy: Journal Articles

Show full item record

Page view(s)

75
Last Week
10
Last month
11
checked on Apr 1, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.