Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12188/1458
DC FieldValueLanguage
dc.contributor.authorStankovski, Tomislaven_US
dc.contributor.authorMcClintock, Peter V Een_US
dc.contributor.authorStefanovska, Anetaen_US
dc.date.accessioned2019-02-26T11:29:56Z-
dc.date.available2019-02-26T11:29:56Z-
dc.date.issued2014-06-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/1458-
dc.description.abstractSynchronization is a widespread phenomenon that occurs among interacting oscillatory systems. It facilitates their temporal coordination and can lead to the emergence of spontaneous order. The detection of synchronization from the time series of such systems is of great importance for the understanding and prediction of their dynamics, and several methods for doing so have been introduced. However, the common case where the interacting systems have time-variable characteristic frequencies and coupling parameters, and may also be subject to continuous external perturbation and noise, still presents a major challenge. Here we apply recent developments in dynamical Bayesian inference to tackle these problems. In particular, we discuss how to detect phase slips and the existence of deterministic coupling from measured data, and we unify the concepts of phase synchronization and general synchronization. Starting from phase or state observables, we present methods for the detection of both phase and generalized synchronization. The consistency and equivalence of phase and generalized synchronization are further demonstrated, by the analysis of time series from analog electronic simulations of coupled nonautonomous van der Pol oscillators. We demonstrate that the detection methods work equally well on numerically simulated chaotic systems. In all the cases considered, we show that dynamical Bayesian inference can clearly identify noise-induced phase slips and distinguish coherence from intrinsic coupling-induced synchronization.en_US
dc.language.isoenen_US
dc.relation.ispartofPhysical review. E, Statistical, nonlinear, and soft matter physicsen_US
dc.titleDynamical inference: where phase synchronization and generalized synchronization meeten_US
dc.typeArticleen_US
dc.identifier.doi10.1103/PhysRevE.89.062909-
dc.identifier.volume89-
dc.identifier.issue6-
item.grantfulltextopen-
item.fulltextWith Fulltext-
crisitem.author.deptFaculty of Medicine-
Appears in Collections:Faculty of Medicine: Journal Articles
Files in This Item:
File Description SizeFormat 
Stankovsk_PREi2014.pdf743.03 kBAdobe PDFThumbnail
View/Open
Show simple item record

Page view(s)

98
checked on May 2, 2024

Download(s)

14
checked on May 2, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.