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Abstract. The usage of machine learning is expanding over all scien-
tific fields and this branch is becoming more and more popular in the
last years. In this paper we consider application of machine learning in
the cryptanalysis, precisely in cryptanalysis of DES algorithm. This al-
gorithm works in 16 rounds and we make two analyses: one for only
one round and one for all rounds. We use different datasets and specific
neural network for each analysis. We present results from several experi-
ments for different datasets and different keys. Furthermore, we analyze
and compare the obtained results, where we provide visual and textual
presentation and we derive some conclusions.
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1 Introduction

The process of encryption, i.e., transforming plaintext into ciphertext and its
reverse process decryption can be done by two techniques: symmetric and asym-
metric key cryptography. In this paper we chose symmetric cryptography which
means using the same key for encryption and decryption. For each algorithm
there are two key aspects used: algorithm type (define size of plaintext that
should be encrypted per step) and algorithm mode (define cryptographic algo-
rithm mode). The algorithm mode presents a combination of a series of the basic
algorithm and some block cipher with feedback from previous steps. In symmet-
ric cryptography there are block and stream ciphers and we focused on block
ciphers choosing the DES algorithm (Data Encryption Standard).

DES is a block cipher. It was founded and developed from the company IBM
with the support of NBS. The algorithm encrypts the data in a block of 64 bits
(8 bytes) and uses a key with length of 56 bits. In simple words, each separate



block works on the following way: we have plaintext with 64 bits, we use a key of
56 bits and we get a ciphertext again with 64 bits. Initially, each eight position
of the key is discarded and that is how we get 56 from 64 bits [1].

DES is based on two fundamental principles of cryptography: substitution
(confusion) and transposition (diffusion). It has 16 steps and each step is called
round. First of all, the initial plaintext with 64 bits is handed over to Initial
Permutation (IP) function and this function is performed on the plaintext. After
this, the permutation is separated in two halves of the block: Left Plaintext (LP)
and Right Plaintext (RP), each consisted of 32 bits. This part of left and right
plaintext is repeated in 16 rounds of the encryption process with its own key.
From key with length of 56 bits, a different 48-bit subkey (round key) is generated
using Key Transformation. Using the expansion permutation the Right Plaintext
is expanded from 32 bits to 48 bits. Then both the key and the Right Plaintext
have the same number of bits, 48 and they are XORed, so the result output is
given in the next step. In order to go back to 32 bits, here the algorithm uses
the S-box substitution. After substitution, these bits are permuted using P-box
Permutation. The P-box output of 32 bits are XORed with the Left Plaintext
and old Right Plaintext become the Left Plaintext and the process is called
swapping. This process is repeated 16 times and after the completion of all 16
rounds the Final Permutation is performed.

This paper is a combination of both fields, cryptanalysis and machine learn-
ing or more specifically we use neural networks. Neural networks are a set of
algorithms, that are designed to recognize a given pattern. Many cryptographic
methods and algorithms have the disadvantage of requirement a large compu-
tational power, complexity and time consumption and they require some more
powerful performance in order to provide better results. In such situations, neural
networks are often applied [17]. Their usage in our paper are separately described
in each section and depends on whether we use DES with one or with all rounds.
We use Python programming language to implement our crypto-machine learn-
ing survey. In order to provide comparison between possible errors we tested
neural networks on one round and on the whole algorithm (16 rounds) as well,
where we used different datasets. The results we got will be separately described
in the following sections.

This section is followed by a section where we give an overview of the related
work to our research. It contains short analysis of previous papers cryptanalysis
of DES and Triple-DES and how neural networks can be used for cryptanalysis.
In the past, there were more attempts to combine both fields and we give brief
overview of their usage. Additionaly, we give short overview how DES algorithm
is a target for many attacks and what is their impact on the whole process.
In Section 3, we present our experimental results, where we used a neural net-
work for DES in one round and DES in all rounds. We analyze results obtained
for different datasets and different neural networks. At the end, we give some
conclusions.



2 Related work

The DES has been a target for many attacks for a long time. Some of the
attacks started by analyzing reduced-round DES and went up to the full-round
DES. The most well known two attacks are differential cryptanalysis and linear
cryptanalysis.

Differential cryptanalysis is a chosen-plaintext technique, developed by Bi-
ham and Shamir in [2], against reduced-round variants of the DES cipher, and
later applied to the full 16-round DES.

Linear cryptanalysis is a statistical, known-plaintext attack on block ciphers.
This technique has been more extensively developed by Matsui in attacks on the
DES cipher [3].

In DES the S-boxes are the only non-linear transformation. All the remaining
components, such as the data expansion and permutations are linear transfor-
mations. The full linear cryptanalysis of DES required 243 known-plaintexts.

Many other cryptanalytic attacks were developed afterwards, such as diffe-
rential-linear cryptanalysis [4], related-key attacks [5, 6] and non-linear crypt-
analysis [7].

In [4], most of the research is based on the usage of a recursive auto-associative
artificial neural network. This type of system was unique at that time because it
is self-organizing and therefore it does not require any design decisions from the
user. Therefore, a unique property of the system allows for a variable number of
symbols to be represented in each coded unit.

As we move on to related-key attacks, in [5, 6], two identical dynamical sys-
tems (neural networks), starting from initial conditions, can be synchronized by
a common external signal which is coupled to the two systems. By doing that,
the two neural networks, that are trained on their mutual output, synchronize
to an identical time dependent weight vector. On this way, the synchronization
by mutual learning can be easily applied to a secret key exchange protocol over
a public channel.

The non-linear cryptanalysis, given in [7], analyze the security of a new key
exchange protocol. This protocol is based as well on mutually learning neural
networks. This paper represents a new potential source for public key crypto-
graphic schemes which are not based on theoretical number functions and have
small time and memory complexities.

Triple-DES was a target for a slightly different type of attacks due to its
repetition of DES algorithm. Repeated encryption was bounded by some limita-
tions as mentioned in [8] and [9]. In these papers, we have a conventional remote
password authentication schemes. These schemes allow a serviceable server to
authenticate the legitimacy of a remote server login user. Nevertheless, these
schemes are not used for multi-server architecture environments.

Meet-in-the-middle attacks rendered the effective key to be of 112-bits length
[10]. Few attacks on Triple-DES were successful in terms of numbers of known/
chosen ciphertexts/plaintexts needed to break the algorithm such as the new
attack introduced by Lucks which requires around 232 known plaintexts, 2113

steps, 290 single DES encryptions and 288 memory [18]. Although it is the most



successful attack on Triple-DES in terms of number of needed known-plaintexts,
it was, and still is considered impractical by the NIST. In this paper, a standard
technique for attack of triple encryption is considered. The type of attack is
meet-in-the-middle attack. One of the attacks used in [18], reduces the overall
number of steps to roughly 2108. Other attacks in [18] optimize the number of
encryptions at the cost of increasing the number of other operations. Therefore,
it is possible to break triple DES doing 290 single encryptions and no more than
2113 faster operations.

There have been few attempts to use neural networks in cryptography. In
1998, Clark and Blank introduced a cryptographic system based on neural net-
works [11]. In [12], a connection between the theory of neural networks and
cryptography is investigated. That is a new phenomenon and namely the syn-
chronization of neural networks is leading to a new type of exchange of secret
messages.

Another application of neural networks in cryptography was published by
Kinzel and Kanter which introduced a way of using neural networks in secret key
exchange over a public channel [13]. Klimov, Mityagin and Shamir introduced a
method of cryptanalysis to the previous system in [14].

A scheme for remote password authentication was published in [15]. Besides
these findings, another development was done on this field and it brought opti-
mization in both, differential and linear cryptanalysis.

A known-plaintext attack was done in [16]. This attack is based on training
a neural network to do the decryption process. The neural network is being
fed with the ciphertext as its input and the plaintext is considered the reference
output. After the training of neural network with a sufficient amount of plaintext-
ciphertext pairs that are all encrypted with the same key, the neural network will
be able to retrieve the plaintext from the ciphertext that has not been part of the
training process, as this ciphertext is encrypted with the same key. Therefore,
this type of attack is regarded as a global deduction attack.

3 Experiments

In this section we present and analyze obtained experimental results for one
DES round and for full-round DES (16 rounds). The goal of our experiments is
to perform a known ciphertext attack with usage of machine learning algorithms,
or to be more precise with artificial neural networks. The whole process of the
attack with ANNs has three phases:

– Creation of dataset
As previously mentioned our goal is to determine the plaintext messages,
based on the ciphertext for a given key. Therefore, we have to create a dataset
where for a given key we will have multiple combination of ciphertexts and
plaintext. We will do so by creation of a random m×n binary matrix. Each
row in this matrix represents a random block with size n that can be used
for encryption with one round of the DES algorithm or for encryption with



all 16 rounds of the DES algorithm. If we create the dataset for one round
encryption, then n = 32 because the only thing that we need to predict in
this case is the one half of the plaintext block that is an argument in the
Feistel function. If we create the dataset for full DES encryption, then n = 64
because we need to determine the complete block.

Outputm,n =


plain1,1 plain1,2 · · · plain1,n

plain2,1 plain2,2 · · · plain2,n

...
...

. . .
...

plainm,1 plainm,2 · · · plainm,n

 (1)

Also, we need to create another m × n binary matrix where the i-th row
will correspond to the encryption of the i-th row (block) of the input matrix
with the given key.

Inputm,n =


cipher1,1 cipher1,2 · · · cipher1,n
cipher2,1 cipher2,2 · · · cipher2,n

...
...

. . .
...

cipherm,1 cipherm,2 · · · cipherm,n

 (2)

The matrix (1) will be used as the output of the artificial neural network,
and the matrix (2) will be used as the input of the neural network.

– Splitting the dataset into training and testing subsets
Due to the complexity of this case, we decided that we need huge amounts
of data in order to train good models for decryption of a given ciphertext.
Because of the volume of the data, the best method to train and evaluate
the model afterwards and reducing the time and computational resources,
is the holdout method. We decided to split the complete dataset into two
subset, a training dataset that represents randomly selected 80% of the orig-
inal dataset and testing dataset that contains the rest 20% of the original
datasets. The training dataset, can be split again with the ratio of 80-20 in
order to validate the created models and tune the hyperparameters of the
models.

– Evaluation of the trained models for the testing dataset
This is definitely not a regular machine learning problem, therefore we are
introducing our own evaluation metrics that will be used to determine the
accuracy of the trained models for known ciphertext attacks.
The outside error is calculated with the following formula:

Outside error =

∑m
i=1

∑n
j=1 predicted(i, j) ⊕ original(i, j)

m ∗ n
where,

• predicted(i, j) is jth bit in the ith block of the predicted text (output of
the neural network)



• original(i, j) is jth bit in the ith block of the plaintext (original output)
• m is the number of blocks in the dataset
• n , as previously explained, is the length of the blocks that are used in

the input and output matrices.

On the other hand, the total accuracy is the percentage of accurately pre-
dicted (decrypted) blocks, i.e.,

Total accuracy =
#accurately predicted blocks

m

3.1 Experiments with one DES round

Datasets In these experiments we have created 1000 datasets, where each
dataset corresponds to a different round 48 bit key. The round keys for each
dataset was generated randomly (as the plaintext blocks) and a validation of
the keys during their generation was enforced to guarantee that the keys are not
weak keys.

Every dataset contained about 219 pairs of (ciphertext, plaintext), where the
plaintext and the ciphertext are 32 bit blocks, because the goal in this part is to
predict the plaintext for one DES round.

Neural network The experiments were conducted with usage of the scikit-
learn python package and the neural network has 4 hidden layers with 128, 256,
256 and 128 nodes in the corresponding layers. For optimization of the weights
in the neural networks we use Stochastic gradient descent, for loss function the
Mean Square Error is being used and the training was done in 300 epochs.
The execution of all 1000 experiments was distributed on different nodes on a
supercomputer in order to increase the necessary time. In Table 1 the results for
10 experiments with the smallest outside error, are shown.

Table 1. Experimental results for outside error and total accuracy

Dataset no. Net. Layout Outside error Total accuracy

1 128-256-256-128 0.16379 0.06595

2 128-256-256-128 0.16411 0.06018

3 128-256-256-128 0.16452 0.06159

4 128-256-256-128 0.16471 0.06494

5 128-256-256-128 0.16471 0.06517

6 128-256-256-128 0.16521 0.06001

7 128-256-256-128 0.16522 0.06027

8 128-256-256-128 0.16524 0.06279

9 128-256-256-128 0.16527 0.05869

10 128-256-256-128 0.16543 0.06167



Results with different dataset size In order to demonstrate the importance
of the volume of the dataset used in training of the machine learning models we
have conducted experiments with different sizes of the dataset. We did this for
three randomly selected keys from the 1000 keys that we previously generated,
and also we chose subsets from the original dataset with different lengths that
were incremented by 50 000 samples in each iteration. We can notice in Fig.1.
that as the dataset size increases, the outside error for prediction of the plaintext
decreases.

Fig. 1. Visualization of the dependency of the outside error on the dataset size

Also, on Fig.2. we can notice that the total accuracy increases as the size of
the database increases.

Fig. 2. Visualization of the dependency of the total accuracy on the dataset size



3.2 Experiments with all DES rounds

The main idea was to preform the decrypton of DES. Therefore, after we ob-
tained the results from DES with one round and they shown good outcome,
we decide to restructure the neural network and build it for all DES rounds
decryption.

Dataset Each dataset used in this case is build of 64-bit inputs and 56-bit key,
where one key represents one dataset and the inputs in each are unique. The
visual representation of the input and the output of the neural network is given
with the following matrices.

We trained the neural network with 217 pairs of (ciphertext, plaintext), where
20% of it are used for validation.

For the testing of the network we use 215 inputs (ciphertexts), that will give
predicted plaintext, which is then compared with the original one. The output
of the neural network are numbers in the interval [0,1], so we round them to 0
or 1.

Neural network The neural network was built of one input layer where there
are 64 encrypted bits as input and appropriately an output layer with 64 bits
as output, that is the prediction of the decrypted data. In the middle, there are
four hidden layers with different inputs. The network was trained in 150 epochs
and the required time is approximately 35-40 minutes.

Fig. 3. Visual representation of the neural network

As shown on Fig. 3 we use ReLU as activation function. This function gives
best results in practice, because its output is: f(x) = max(0, x). Therefore, the
output will be in the interval [0,1], and each number will represent the probability
that its value is 1. To translate these probabilities into bits we are using round
function that leads to the final result (prediction bits).



To optimize our results we used Stochastic gradient descent. Additionally,
we applied the Mean Square Error as a function to minimize the loss.

Results Here, we present experimental results for full-round DES obtained for
different neural network structures. For each experiment we calculate the outside
error and the total accuracy.

In Table 2 results for the first considered network layout (128-256-256-128)
and three different datasets are given.

Table 2. Experimental results for the first network

Dataset no. Outside error Total accuracy

1 0.08691 0.01397

2 0.10363 0.00607

3 0.12218 0.00210

From the results for the total accuracy in Table 2 we can conclude that with
this network the percentage of accurately decrypted inputs is small. Therefore,
we try with different structures of the neural network, that lead to better results
presented on Table 3.

Table 3. Experimental results for different network layouts

Dataset no. Net. Layout Outside error Total accuracy

3 256-512-512-256 0.00586 0.97020

1 256-512-512-256 0.00665 0.96673

2 256-512-512-256 0.00732 0.96565

2 128-256-512-256 0.00816 0.92515

1 128-256-512-256 0.00871 0.88050

3 128-256-512-256 0.00916 0.85683

The results in Table 3 showed that the most appropriate inputs for the hidden
layers in the network are 256-512-512-256. For this network approximately 97%
of the ciphertexts are accurately decrypted. On the other side, for the network
with layout 128-256-512-256 this percentage is between 86% and 93%. Also, with
the network 256-512-512-256 the values of outside error are smallest.



Fig. 4. Visualization of the dependency of the total accuracy on different networks

In Fig.4 we can visually compare results for total accuracy obtained with all
three neural networks.

4 Conclusion

In this paper we consider application of machine learning in DES cryptanalysis.
We made a lot of experiments for different datasets, different keys and different
neural networks. The goal of our experiments is to perform a known ciphertext
attack with usage of machine learning algorithms, or to be more precise with
the help of neural networks.

We analyse the outside error and the total accuracy, obtained for different
neural networks, as measures for the success of the attack. The results show
that for a specific neural network, approximately 97% of the ciphertexts are
accurately decrypted. This large percentage is confirmation for the success of
our cryptanalysis and achievement of the goal.

As a further research, we can perform and analyze this attack for other en-
cryption algorithms.
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