
Parallelization of Machine Learning Methods by Using
CUDA

Goran Velkoski1, Monika Simjanoska2, Sasko Ristov3 and Marjan Gusev4

Abstract – Image analysis, data mining, protein folding and
gene sequencing are some examples of high-intensive
bioinformatics applications that require high computing
resources. In this paper we present a problem of computationally
intensive methodology for microarray data analysis, whose
performance needs to be improved by using high performance
computing techniques. Parallelization is a key computing
technique for reducing the time required for the analyses and the
classification procedure. GPU provides great level of
parallelization based on throughput of vast amount of data
needed for machine learning problems. Therefore, we propose a
model for machine learning problems parallelization based on
GPU programming that will increase the speedup of several
stages of the machine learning process.

Keywords –CUDA, Bioinformatics, Parallelization

I. INTRODUCTION

Scientific computing involves the construction of
mathematical models and numerical solution techniques to
solve scientific and engineering problems that often require a
huge number of computing resources to perform large scale
experiments, or to cut down the computational complexity
into a reasonable time frame [1]. The image analysis, data
mining, protein folding and gene sequencing are important
tools for biomedical researchers, and examples of high
compute and resource intensive scientific applications [2].
When comparing the DNA sequencing throughput to the
computer speed, sequencing wins at a rate of about 5-fold per
year [3], while computer performance generally follows the
Moore’s Law, doubling only every 18 or 24 months [4]. The
exponential growth of biomedical data requires large storage
databases and computing resources. However, the need for
computing capacity in the biomedical applications varies
dramatically for different stages, i.e. sometimes very big
computing power with huge storage space is needed, whereas

in the following stage these computationally expensive
applications may not require as much computing power as in
the previous steps [5].

Bioinformatics researchers are now confronted with
analysis of ultra large-scale data sets, a problem that will only
increase at an alarming rate in coming years [6]. Therefore,
the parallelization seems to be a key computing technique for
reducing the time required for the bioinformatics analyses.

GPU is a powerful technology created for graphics 3D
rendering towards meeting the need of the 3D gaming
industry. Single-threaded processor performance is no longer
scaling at historic rates. A GPU that is optimized for
throughput delivers parallel performance much more
efficiently than a CPU that is optimized for latency [7].

Nowadays a GPU has become an important part of today’s
computing systems. The GPU’s rapid increase in both
programmability and capability has spawned a research
community that has successfully mapped a broad range of
computationally demanding, complex problems to the GPU
[8].

CUDA™ is a parallel computing platform and
programming model invented by NVIDIA. It enables dramatic
increases in computing performance by harnessing the power
of the GPU [9]. CUDA provides several key abstractions, thus
the GPU programming model has proven quite successful at
programming multithreaded many code GPUs, to achieve
high speedups for research codes and productive solutions.
Therefore, hybrid CUDA OpenMP, and Message Passing
Interface (MPI) programming approaches emerge in order to
create GPU enabled clusters [10].

In this paper we present a CUDA GPU enabled
parallelization method for a bioinformatics problem, i.e., a
methodology for biomarkers detection and classification
analysis of microarray gene expression data. We decided to
use CUDA to parallelize this methodology since it is an
example of computationally intensive problem whose demand
for computing resources varies in different stages of the
analyses.

The rest of the paper is organized as follows. In Section II
we give an overview of the latest literature for parallel
solutions of bioinformatics problems. Our parallel machine
learning (ML) approach is presented in Section III. The
conclusion and our plans for future implementation of the
analysis are discussed in Section IV.

II. RELATED WORK

In this section we briefly present the latest frameworks for
distributed computing and parallelization solutions of
bioinformatics problems.

1Goran Velkoski is with Innovation LLC, Vostanichka 118, 1000,
Skopje, Republic of Macedonia, E-mail:
goran.velkoski@innovation.com.mk.

2Monika Simjanoska is with the Faculty of Computer Science and
Engineering at Ss. Cyril and Methodius University - Skopje, Rugjer
Boshkovic 16, Skopje, Republic of Macedonia, E-mail:
m.simjanoska@gmail.com.

3Sasko Ristov is with the Faculty of Computer Science and
Engineering at Ss. Cyril and Methodius University - Skopje, Rugjer
Boshkovic 16, Skopje, Republic of Macedonia, E-mail:
sashko.ristov@finki.ukim.mk.

4Marjan Gushev is with the Faculty of Computer Science and
Engineering at Ss. Cyril and Methodius University - Skopje, Rugjer
Boshkovic 16, Skopje, Republic of Macedonia, E-mail:
marjan.gushev@finki.ukim.mk.

83

Altekar et al. [11] present a parallel algorithm for
Metropolis Coupled Markov Chain Monte Carlo method used
in phylogeny. The proposed parallel algorithm retains the
ability to explore multiple peaks in the posterior distribution
of trees while maintaining a fast execution time. The
algorithm has been implemented using two popular parallel
programming models: message passing and shared memory.
Performance results indicate nearly linear speed improvement
in both programming models for small and large data sets.

Multiple sequence alignment (MSA) is an important step in
comparative sequence analyses. Katoh and Toh [12]
parallelized the three calculation stages, all-to-all comparison,
progressive alignment and iterative refinement, of the MAFFT
MSA program. They implemented two natural parallelization
strategies, best-first and simple hill-climbing. Based on
comparisons of the objective scores and benchmark scores
between the two approaches, they selected a simple hill
climbing approach as the default.

ClustalW [13] is a tool for aligning multiple protein or
nucleotide sequences. The alignment is achieved via three
steps: pairwise alignment, guide-tree generation and
progressive alignment.

Taylor [6] is giving an overview of the Hadoop -
MapReduce framework and its current applications in
bioinformatics. He concludes that Hadoop and the
MapReduce programming paradigm already have a
substantial base in the bioinformatics community, especially
in the field of next-generation sequencing analysis. This is due
to the cost-effectiveness of Hadoop based analysis on
commodity Linux clusters, and in the cloud via data upload to
cloud vendors who have implemented Hadoop/HBase; and
due to the effectiveness and ease-of-use of the MapReduce
method in parallelization of many data analysis algorithms.

Considering CUDA, the parallel computing platform of our
interest, we present the following applications.

The Smith Waterman algorithm [14] for sequence
alignment is one of the main tools of bioinformatics. It is used
for sequence similarity searches and alignment of similar
sequences.

Ligowski and Rudnicki [15] present an efficient
implementation of the Smith Waterman algorithm on the
Nvidia GPU. The algorithm achieves more than 3.5 times
higher per core performance than the previously published
implementation of the Smith Waterman algorithm on GPU,
reaching more than 70% of theoretical hardware performance.

Markov clustering (MCL) [16] is becoming a key algorithm
within bioinformatics for determining clusters in networks.
However, with increasing vast amount of data on biological
networks, performance and scalability issues are becoming a
critical limiting factor in applications. Bustaman et al. [16]
introduce a very fast MCL using CUDA to perform parallel
sparse matrix-matrix computations and parallel sparse Markov
matrix normalizations, which are at the heart of MCL. They
utilized ELLPACK-R sparse format to allow the effective and
fine-grain massively parallel processing to cope with the
sparse nature of interaction networks data sets in
bioinformatics applications. As the results show, CUDA MCL
is significantly faster than the original MCL running on CPU.

In context of microarray analysis studies, Shterev et al. [17]
have developed a CUDA based implementation, permGPU
that employs GPU in microarray association studies. They
illustrate the performance and applicability of permGPU
within the context of permutation resampling for a number of
test statistics. An extensive simulation study demonstrates a
dramatic increase in performance when using permGPU on an
NVIDIA GTX 280 card compared to an optimized C/C++
solution running on a conventional Linux server.

Zhang et al. [18] develop Parallel Multicategory Support
Vector Machines (PMC-SVM) based on the sequential
minimum optimization-type decomposition method for SVM
(SMO-SVM). It was implemented in parallel using MPI and
C++ libraries and executed on both shared memory
supercomputer and Linux cluster for multicategory
classification of microarray data. PMC-SVM has been
analysed and evaluated using four microarray datasets with
multiple diagnostic categories, such as different cancer types
and normal tissue types.

Salinas and Karmaker [19] have presented a set techniques
used to analyse a microarray dataset by computing correlation
coefficients between gene expression profiles and
transcription factor expression profiles across tissues. Its goal
is to find multiple transcription factors that bind together and
have a target gene whose transcription is modulated. The
technique involves hypothetical heteromeric transcription
factor profiles whose expressions are estimated by taking
minima for each tissue. A scoring function based on a
comparison among the correlation coefficients is used to sort
and prioritize combinations of genes and transcription factors.
The higher scoring combinations are thought to be more likely
to form transcription factor complexes for the gene. By using
CUDA enabled NVIDIA GPUs to speed up the computations,
they achieved speedups of about 6x.

III. PARALLEL ML APPROACH

In this section we discuss the ML approach, separate it in
several sequential stages and determine the level of
parallelization that can be employed on each of them.

A. ML Process

In general, the ML process can be abstracted in three
distinct stages: Data Preprocessing, Data Modelling and Data
Classification, as depicted in Figure 1.

1) Data Preprocessing: The input data is usually retrieved
from the publicly available databases, or gathered from
experiments done by hospitals, research centers,
meteorological stations, etc. The input data is raw and inclined
to noise. Therefore, it must be preprocessed in order to be
applicable in the methods for knowledge extraction. Since the
raw data sets are often measured in gigabytes, the
preprocessing process is considered to be the slowest part in
the ML procedure. However, a sequential approach of
preprocessing and independence in its steps are the features
that can be easily parallelized.

84

2) Data Modelling: As soon as the data is preprocessed, it
is ready to be an input in a series of methods for the purpose
of creating a suitable model for further classification analysis.
This part of the process can also benefit from the

parallelization, since it can be slow and inefficient when being
executed sequentially.

3) Data Classification: The final goal is achieved when a
reliable classifier is created. The testing procedure is usually
less computation demanding than the training procedure;
however, it depends on the type of classification method used
and on the problem dimensionality.

B. Bioinformatics ML Methodology

In this section we present the computation intensive
segments of our methodology for microarray analysis
presented in [20].

The methodology is developed for two different
microarrays technologies and as discussed in Section III-A
can also be mainly separated in three parts: preprocessing,
building a classification model and the classification process
itself.

1) Preprocessing: The preprocessing consists of few
methods executed in the following order: Quantile
Normalization (QN), Low Entropy Filter (LEF), T-test, False
Discovery Rate (FDR) and Volcano Plot (VP).

The QN is a gene expression normalization method for
making two distributions identical in statistical properties. It
can be easy parallelized since we normalize each column of
the input matrix distinctively.

LEF is a filter that removes the genes with low variability
in their expression levels across the samples. It is based on the
entropy computations of each gene (row) in the data matrix,
and therefore, can also be parallelized.

The T-test computes the value of a t-statistics for the
difference between means of the two columns of data.

FDR uses the p-values from the T-test in order to discover
the false positive genes, i.e. the genes that were found to be
significant when in reality there is no statistical significance.
It is computed for each gene and the process can be
parallelized.

When applying the VP method, we consider that the
number of genes has significantly decreased from thousands
to hundreds and therefore, there is no need of parallelization.

2) Building the classification model: In order to build the
classification model, we perform hypothesis tests to determine
the most probable distributions of the genes. This process can
be parallelized since we perform tests for four types of
distributions for each of the genes. During the testing, the
parameters of the distributions are estimated by using the
Maximum Likelihood Estimation (MLE) method, which are
then used in the Chi-square goodness-of-fit test. The input of
Chi-square goodness-of-fit is also a vector of the expression
values of a given gene.

3) Classification procedure: The classification method that
we proposed is based on a calculation of the Bayesian
posterior probability P (Ci| x):

∑
= 2

1
)(*)|(

)(*)|(
)|(

ii

ii
i

CPCxp

CPCxp
xCp






 (1)

C. Parallel execution on CUDA GPU

We already mentioned that large number of methods in the
ML process can be parallelized. Since almost always the
methods are without data dependency, we can easily partition
the data and create full data parallelization.

Because of the large number of multiple distinctive
microarray data portions on which several distinctive
operations are used as single instructions sequentially, we
conclude that the GPU SIMD architectures might be an
appropriate platform.

In Figure 2 we present the parallelization procedure. For
each of the above methods a distinctive kernel is created on
the GPU. Each kernel is executed on optimal number of cores
on GPU and each core gets a single vector data to work on.

If the time needed for each core to do its job is tc, and Nv
and Nc denote the number of vectors and the number of cores
available correspondingly, then the time needed for a single
method execution Tm is calculated by using the following
equation:

Fig. 1. Machine Learning Approach

Fig. 2. Parallelization on GPU Architectures

85

c

cv
m N

tN
T

*
= (2)

In the best case scenario the number of vectors Nv will be
equal to the number of cores Nc and therefore, Tm = tc, i.e., the
time needed for a method execution equals the time needed
for a single core to finish its task.

Since no GPU provides unlimited number of cores, we can
conclude that this is just an isolated case. Most commonly the
CUDA enabled GPU devices are packed up with Nc =512, or
Nc = 1024 cores. Therefore, the expected speedup S according
to Gustafson’s law when executed on CUDA enabled GPU is:

c
mp

mpc

mp

ns N
T

TN
T
T

S ===
*

 (3)

where Tms is the method execution time when implemented
sequentially and Tmp is the method execution time executed in
parallel.

Since the GPU involves additional latency for data transfer
and core utilization, we hypothesize that the speedup will not
reach 512, or 1024 with fully utilized GPU; however, this will
be part of our future work on the topic.

In the end, each of the kernels will be executed sequentially
and therefore the overall speedup will abide the speedup for
each of the methods.

IV. CONCLUSION

In this paper we present a computation intensive
bioinformatics methodology for biomarkers detection and
classification analysis of microarray gene expression data.
Our ML approach is comprised in three distinctive parts,
where each part consists of one or more different methods.
Considering the methods used in the methodology, we can
conclude that the analyses are usually performed in context of
genes, or patients, but never depend on both.

We propose a parallelization procedure to reduce the time
for execution of the distinct methods. Because of the nature of
the problem we decided that a parallelization by using GPU
computing may be convenient. Consequently, we discussed
the advantages of using CUDA technology for parallelization.

Based on CUDA GPU properties we modelled a kernel
based solution for ML process theoretically. In our solution
each kernel is an implementation of a single method. Since the
methods are sequentially executed, the kernel execution is
also sequential.

As future work we will implement large variety of methods
for ML by using CUDA and we will test if our CUDA
implementations achieve the expected speedup level.

REFERENCES
[1] C. Vecchiola, S. Pandey, and R. Buyya, “High-performance

cloud computing: A view of scientific applications,” in
Pervasive Systems, Algorithms, and Networks (ISPAN), 2009
10th International Symposium on. IEEE, 2009, pp. 4–16.

[2] A. Rosenthal, P. Mork, M. H. Li, J. Stanford, D. Koester, and P.
Reynolds, “Cloud computing: A new business paradigm for

biomedical information sharing,” Journal of Biomedical
Informatics, vol. 43, no. 2, pp. 342–353, 2010.

[3] L. D. Stein et al., “The case for cloud computing in genome
informatics,” Genome Biol, vol. 11, no. 5, p. 207, 2010.

[4] G. E. Moore et al., “Cramming more components onto
integrated circuits,” Proc. of IEEE, vol. 86, no. 1, pp. 82–85,
1998.

[5] H. Chae, I. Jung, H. Lee, S. Marru, S.-W. Lee, and S. Kim, “Bio
and health informatics meets cloud: Biovlab as an example,”
Health Information Sci. and Systems, vol. 1, no. 1, p. 6, 2013.

[6] R. C. Taylor, “An overview of the hadoop/mapreduce/hbase
framework and its current applications in bioinformatics,” BMC
bioinformatics, vol. 11, no. Suppl 12, p. S1, 2010.

[7] J. Nickolls and W. J. Dally, “The GPU computing era,” IEEE
micro, vol. 30, no. 2, pp. 56–69, 2010.

[8] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and
J. C. Phillips, “GPU computing,” Proceedings of the IEEE, vol.
96, no. 5, pp. 879–899, 2008.

[9] NVIDIA. (2014, May) NVIDIA CUDA - Parallel Programming
and Computing Platform. [Online]. Available:
http://www.nvidia.com/object/ cuda home new.html

[10] C.-T. Yang, C.-L. Huang, and C.-F. Lin, “Hybrid cuda, openmp,
and mpi parallel programming on multicore gpu clusters,”
Computer Physics Communications, vol. 182, no. 1, pp. 266–
269, 2011.

[11] G. Altekar, S. Dwarkadas, J. P. Huelsenbeck, and F. Ronquist,
“Parallel metropolis coupled markov chain monte carlo for
bayesian phylogenetic inference,” Bioinformatics, vol. 20, no. 3,
pp. 407–415, 2004.

[12] K. Katoh and H. Toh, “Parallelization of the mafft multiple
sequence alignment program,” Bioinformatics, vol. 26, no. 15,
pp. 1899–1900, 2010.

[13] K-B. Li, “ClustalW-MPI: ClustalW analysis using distributed
and parallel computing,” Bioinformatics, vol. 19, no. 12, pp.
1585-1586, 2003.

[14] F. T. Smith and S. M. Waterman, “Identification of common
molecular subsequences,” in Journal of molecular biology, vol.
147, no. 1, pp. 195-197, Elsevier, 1981.

[15] L. Ligowski and W. Rudnicki, “An efficient implementation of
smith waterman algorithm on gpu using cuda, for massively
parallel scanning of sequence databases,” in Parallel &
Distributed Processing, 2009. IPDPS 2009. IEEE International
Symposium on. IEEE, 2009, pp. 1–8.

[16] A. Bustamam, K. Burrage, and N. A. Hamilton, “Fast parallel
markov clustering in bioinformatics using massively parallel
computing on gpu with cuda and ellpack-r sparse format,”
IEEE/ACM Transactions on Computational Biology and
Bioinformatics (TCBB), vol. 9, no. 3, pp. 679–692, 2012.

[17] I. D. Shterev, S.-H. Jung, S. L. George, and K. Owzar,
“permgpu: Using graphics processing units in RNA microarray
association studies,” BMC bioinformatics, vol. 11, no. 1, p. 329,
2010.

[18] C. Zhang, P. Li, A. Rajendran, Y. Deng, and D. Chen,
“Parallelization of multicategory support vector machines (pmc-
svm) for classifying microarray data,” BMC bioinformatics, vol.
7, no. Suppl 4, p. S15, 2006.

[19] E. A. Salinas and A. Karmaker, “Cuda-accelerated data-mining
for putative heteromeric transcription factors and target genes
using microarray gene expression profiles.”

[20] M. Simjanoska, A. Madevska Bogdanova, and Z. Popeska,
“Bayesian posterior probability classification of colorectal
cancer probed with Affymetrix microarray technology,” in
Information & Communication Technology Electronics &
Microelectronics (MIPRO), 2013 36th International Convention
on. IEEE, 2013, pp. 959–964.

86

