
Two-phase Classification of Colorectal Cancer
Stages

Frosina Stojanovska, Viktorija Velinovska, Monika Simjanoska and Ana Madevska Bogdanova
Faculty of Computer Science and Engineering

Ss. Cyril and Methodius University
Skopje, Republic of Macedonia

stojanovska.frose@gmail.com, velinovska.viktorija@gmail.com,
monika.simjanoska@finki.ukim.mk, ana.madevska.bogdanova@finki.ukim.mk

Abstract—Staging of colorectal cancer is one of the essen-
tial factors required to identify the patient’s true therapy for
recovery. Despite the various clinical colorectal cancer staging
methods, this problem remains critical for personalized stage
determination. In this paper, we study the problem of colorectal
cancer stage determination using gene expression data obtained
from DNA microarrays. The goal is to construct a supervised
machine learning classification model that will be able to detect
the stage of colorectal cancer, that is, the model should be able
to separate the stages utilizing 11 biomarkers as features.

Dataset resampling and analyzing the errors between the
real and the predicted class during validation phase, led to the
creation of two-phase classification model, dividing the main
problem of determining the stage of the colorectal cancer into
sub-problems. In the first phase of classification, it is necessary to
create a classification model that will successfully divide the data
between two groups obtained by joining stage I and IV as one
sub-group, and stage II and III as the second sub-group. Once
an instance of the data set is classified into one of the combined
classes, according to this class, the second level classification
reveals the true cancer stage of the instance. Random Forest
is the machine learning algorithm that performed best in all the
experiments, compared to KNN, SVM, Naive Bayes and MLP.

Keywords—gene expression, colorectal cancer, stage detection,
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I. INTRODUCTION

Colorectal cancer (CRC) is malignant cancer located in
the colon and/or rectum. According to the statistics from the
World Health Organization (WHO) [1] provided in 2017, the
cancer is one of the leading sources of death worldwide, and
colorectal cancer is the third most common type of cancer that
occurs in men and women.

After the cancer is diagnosed, it is essential to find the
level of cancer expansion in the affected body part. This is
the process of cancer staging, which helps the doctors to
choose the most appropriate treatment for the recovery of the
patient. There are four stages of colorectal cancer spread in the
AJCC TNM (Tumor size, Lymph Nodes affected, Metastases)
staging system [2], starting from stage I (1) to stage IV (4),
and additionally stage 0 representing a very early phase of
cancer. With this order, an earlier stage refers to a lower
degree of cancer. Histopathology is used in clinical practice
for discovering the cancer stage, with analysis of the local
tumor invasion and the presence of CRC metastases in lymph
nodes. Histologic staging has difficulty detecting the cancer

stage in individuals, so there is a need for more sensitive and
better methods [3].

Cancer is a disease caused by several genetic and epigenetic
alterations [4]. These genetic changes can lead to an unusual
growth of the cells that are transforming into cancer cells.
Cancer research includes solutions from bioinformatics, for
instance, diagnostic protocols or pattern discovery in cancer
by analyzing biological data, especially of the omics data
[5]. The progression of omics data analysis with bioinfor-
matics technologies involves the integration of huge amount
of data, including genomics, transcriptomics and proteomics
data from many different sources. The multi-omics analysis
is continuously more popular in biomedical research, and as
a result authors in [6] had built a freely available platform
LinkedOmics for analysis and comparison of cancer multi-
omics data within and across multiple cancer types.

Machine learning methods are rising as a solution to many
problems in distinct domains. These techniques are utilized to
model the progression and treatment of cancerous conditions
[7]. Machine learning, with its supervised, semi-supervised,
unsupervised, or even reinforcement learning methods, has
the ability to give an interpretation, or, a possible solution of
many biological problems [8]–[10]. The authors in [11] give
an overview of various machine learning models applied to
cancer prognosis and prediction.

Some implemented machine learning algorithms rely on
gene biomarkers as features to build the models. Biomarkers
have a key role in cancer disease discovery, treatment selec-
tion, drug discovery, and personalized medicine [12]. Although
there are plenty of studies that report biomarkers as significant
related to some disease, there are still very few of them
validated of proven and robust clinical utility [13].

Lately, many researchers study and analyze the gene ex-
pression profile data associated with CRC. The authors in [14]
inferred a colon cancer gene regulatory network and studied its
functional and structural meaning using gene expression data.
The goal in this direction is to make a comparative analysis
of this kind of networks of more than one cancer networks
[14]. The research in [15] introduces a study for finding the
potential key candidate genes and pathways in CRC from the
differentially expressed genes (DEGs).

In this paper, we investigate and present a solution to the



problem of detecting the CRC stage employing supervised
machine learning models built with gene expression data in
infected cells. The rest of the paper is organized as follows.
Section II presents the dataset and the methods used to obtain
this dataset. Additionally, it gives details of the machine learn-
ing methods used to build the model of stage classification.
The details of the experiments and the results are given in
Section III. Finally, the last section, Section IV, recapitulates
the main findings and offers suggestions for future work.

II. MATERIALS AND METHODS

DNA microarrays are used to study the extent to which
certain genes are active in cells and tissues. Two widely
used types of DNA microarrays are Affymetrix and Illumina
chips [16]. More detailed information about this technology is
described in [17].

A. Colorectal Cancer Dataset

The dataset used in this paper consists of 657 instances with
features comprised of gene expression from 11 genes, selected
to be the biomarkers associated with CRC, and 1 feature for
the CRC stage. The distribution of the four CRC stages is
given as:

• Stage I - gene expressions from 137 patients.
• Stage II - gene expressions from 257 patients.
• Stage III - gene expressions from 182 patients.
• Stage IV - gene expressions from 81 patients.

The dataset is constructed by merging several CRC datasets
from Gene Expression Omnibus database [18] (whose iden-
tifiers are provided in [19]). The 11 biomarkers extracted by
the analysis presented in [19] showed influence in colorectal
cancer determination. These biomarkers are used in this paper
as features to investigate their importance as gene biomarkers
in colorectal cancer stage determination.

The selected biomarkers genes are:
• CDH3 - Cadherin 3 (or P-cadherin) is a protein-coding

gene that encodes a classical cadherin of the cadherin
superfamily. This gene is located on the chromosome
16 and is associated with specific hereditary genetic
disorders and several cancers including CRC [20].

• CHGA - Chromogranin A is the gene that encodes a
protein that is part of the granin family of neuroendocrine
secretory proteins. CHGA is used as an indicator of
neuroendocrine tumors including carcinoids [21], [22].

• DHRS9 - Dehydrogenase/reductase 9 is the official name
of this gene that encodes a protein which has an ox-
idoreductase activity toward hydroxysteroids and is a
member of short-chain dehydrogenases/reductases (SDR)
family. Paper [23] provides evidence for association of the
decreased expression of DHRS9 with disease progression
and poor outcome of CRC patients.

• GUCA2A - GUCA2A or guanylate cyclase activator 2A
is an endogenous activator of intestinal guanylate cyclase.
The differential expression of this gene in CRC was
associated with the tumor stage in [24].

• GUCA2B - Guanylate cyclase activator 2B encodes a
preproprotein that is proteolytically processed to generate
multiple protein products from the guanylin family. This
gene was one of the six colorectal cancer related genes
in [25].

• HPGD - Hydroxyprostaglandin dehydrogenase 15-(NAD)
encodes nonmetalloenzyme alcohol dehydrogenase pro-
tein responsible for the metabolism of prostaglandins.

• MMP3 - Matrix metallopeptidase 3, as a gene from
the cluster of MMP genes, encodes protein from the
matrix metalloproteinase (MMP) family. In [26] MMP3
is introduces as a prognostic factor of tumor progression
in three common poor prognosis tumor types (pancreatic,
pulmonary, and mammary carcinoma).

• MMP7 - Matrix metallopeptidase 7 is another gene from
the cluster of MMP genes. This gene is overexpressed in
association with CRC liver metastases in paper [27].

• PYY - Peptide YY is the full name of the gene that
encodes preprotein as one of the neuropeptide Y (NPY)
family of peptides.

• SCG2 - Secretogranin II encodes one type of neuroen-
docrine secretory proteins. This gene was overexpressed
in advanced prostate cancer as shown in paper [28].

• VIP - Vasoactive intestinal peptide (or VIP) encodes
a glucagon protein. This gene is expressed in several
tissues, most abundant in pancreatic islets cells and nerve
ganglion [29].

The biomarkers importance has been experimentally inves-
tigated by using the Random Forest method. Fig. 1 presents
the importance of the biomarkers in descending order, showing
the gene MMP7 to be the most important and the gene HPGD
to be the least important biomarker for separation of the stages
with the Random Forest model.

Fig. 1. Feature importance of the biomarkers according to Random Forest
method.

B. The Methodology

Several supervised machine learning algorithms were built
to classify the stage of expansion of the CRC. The models
were supposed to find the separation of the CRC stages using
the dataset explained in the previous Section II-A.



This section provides an overview of the selected and ap-
plied algorithms: Support Vector Machines, K Nearest Neigh-
bors, Multilayer Perceptron, Naive Bayes and Random Forest.

1) SVM: Support vector machines (SVM) are the standard
machine learning technique utilized for many problems. SVMs
take the data as input and process it into a large dimensional
space. Although SVM can be quite complex, considering the
small dimension of our dataset used for training, instance and
feature size, this was not a problem in our case. The SVM
classifier is important with our approach not only because
it promises a good performance, as shown with many other
similar implementations, but also it is a model that can capture
the multivariate statistical properties of our data.

We need a model that distinguishes four different CRC
stages, although SVM works with a binary class. Conse-
quently, we applied SVM with a pairwise classification (one vs
one). The proper kernel function holds the ability to model the
high-dimensional associations from the data. We have selected
the following options for the kernel function: polynomial
kernel, Pearson VII function-based universal kernel (PUK),
and radial basis function kernel (RBF kernel). PUK kernel
function, shown in (1), had the best performance from all
kernel functions, so the results in Section III refer to SVM
model with PUK kernel function.

K(xi, xj) =
1

[1 + (2
√
‖ xi − xj ‖2

√
21/ω − 1/σ)2]ω

(1)

2) KNN: We used the IBk algorithm to implement the KNN
classification. This algorithm actually represents the KNN
algorithm, where IB refers to instance-based (the other name
under which the nearest neighbors are known), while k allows
us to specify the number of closest neighbors. KNN as a lazy
approach works without creating a model and classifies a new
data point with the data itself. We can notice that this method is
much simpler than SVM. KNN is not limited to linearity, so it
can capture even nonlinear relations between the features. This
factor made this algorithm relevant to our problem regarding
that we did not know the type of interaction between the genes.

We use the Euclidean distance as a measure of calculating
the closeness of data points, having in mind that all the features
are actually real numbers. To determine the optimal value for
the parameter k, we considered a space of values ranging
from 3 to 21. The optimal k-value in most of the experiments
was 15. Also, the best results required standardization of the
attributes, that is, the gene expression of the 11 biomarkers.
Apart from the distance measure and the number of closest
neighbours, KNN has another parameter - vote weighting.
Initially, the weights of every data point were equal. Setting
the weight to be the inverse distance (1/distance) the method
remarkably improved its performance.

3) MLP: In the last few years, Multilayer Perceptron
(MLP) has become one of the most promising methods in
machine learning. This neural network consists of hidden
layers with multiple perceptrons that enable the modelling
of any function required for achieving the best separation of

the data instances. With this property, MLP was one of the
algorithms selected to model the function of the dataset with
unknown feature relations.

We implemented the network with one hidden layer. Adding
additional layers did not bring any gain, which is expected
given the small size of the dataset. The backpropagation
algorithm was used to change the weights of the neurons in
the process of training. These weights were adjusted using the
gradient descent and squared error loss function. In this study,
we use the sigmoid function as the activation function.

4) Naive Bayes: The classification with the Naive Bayes
model is based on the Bayesian theorem which uses indepen-
dent assumptions between the predicates. This classifier is easy
to build, so it is also suitable for large datasets. This algorithm
is a simple technique for constructing a classifier, where
the model in this study is built with probabilities obtained
through the features of gene expressions and CRC stages in the
dataset. We do not have information about the independence
of the gene biomarkers. However, despite the naive design and
obviously too simple assumptions, this classifier has proven to
work well in very complex real situations, overcoming other
much more complex classifiers, so it is part of our experiments.

5) Random Forest: Random Forest is an ensemble learning
procedure called Bootstrap Aggregation, or, Bagging, adopted
for classification, regression and similar problems [30]. This
method has excellent performance in classification tasks,
equivalent to standard methods as SVMs. Random Forest has
promising features including the ability for classification of
both two-class and multi-class problems of more than two
classes. Also, it is able to measure the feature (gene) im-
portance. Another advantage is that the parameter fine-tuning
is simple, with a selection of small numbers of parameters
including the number of input features, the number of trees in
each forest, as well as the minimum size of the leaf nodes.

The class determination, that is, the classification, is ob-
tained by the mean of classes received by all trees. With this,
Random Forest tries to fix the overfitting that trees do with the
training datasets. This appeared as a method that would help
to find the perfect decision boundaries between CRC stages.
This algorithm works efficiently with both large and small
datasets. It can handle a huge number of input features without
removing some of them.

Generated ”forests” can be stored for the next use of other
datasets. Also, it is able to calculate closeness between pairs
of cases that can be used for clustering, finding outliers, or to
give interesting views of the data (by scaling), which can be
used to visualize the correlations in our dataset.

III. EXPERIMENTS AND RESULTS

To build and evaluate the described models in the previous
section, we used the Weka software tool [31], as well as
the web tool ArrayMinning described in [32]. We performed
the experiments according to the complexity of the method,
starting from Naive Bayes, up to MLP and SVM.

All the classification models were tested using cross-
validation with k folds, where for the parameter k, we assigned



a value of 10. The results obtained with the use of all the
classifiers are shown in Table I. This validation technique is
used in all of the experiments in this section.

The performance of the techniques has been measured by
using correctly classified (CC) instances, Area Under the
Curve (AUC), Kappa statistics (KS) and Mean Absolute Error
(MAE). We use CC to show the overall accuracy of the
classification of the method, and AUC refers to weighted
average of the area under the Receiver Operating Characteristic
(ROC) curve of every class. KS denotes the reliability of the
method, i.e. measures how the improvement of the predictor
is relative to a random predictor (1 means perfect predictor, 0
means the predictor is no better than a random one). The KS
metrics is given as

KS =
pa − pr
1− pr

(2)

where pa is the success rate of the actual predictor and pr
is the success rate of a random predictor. MAE is the sum
of the absolute differences between predictions and actual
values. It is commonly used in regression models, and for
the classification is defined as

MAE =

n∑
i=1

k∑
j=1

| aj − pj |

n
(3)

where n is the number of instances in the test set, k refers
to the number of classes, aj is the actual class value (1 if
the particular instance class is j and 0 otherwise), and pj
is the predicted probability of the model for the instance to
be classified as class j. We compared the performance of
the methods using the CC and AUC metrics and used the
other metrics as a profound observation of the precision and
separation ability of the models.

A. One-phase Classification

The performance of the models shown in Table I is not
satisfactory, i.e., the models are not capable of separating the
stages of cancer. Therefore, we tried to pre-process the dataset
with different methods before training the models. Of all the
pre-processing techniques that were performed, the only thing
that made a significant improvement was the sampling of the
dataset. This method modified the dataset while leaving the
same number of instances. In fact, samples were randomly
selected from the ”old” dataset in order to build the ”new”
dataset, preserving the initial distribution of the classes. When
selecting a sample of the dataset, it can be re-selected as a
sample in the next iterations - the process called sampling
with replacement. The last iteration is actually the iteration
with which the dataset has the same number of samples as in
the start before pre-processing.

Table II holds the results of the classification models after
performing sampling with replacement. From the results in
this table, Random Forest can be distinguished as the best
model for classification, which in the previous attempt, shown
in Table I, performs slightly less than SVM and KNN. KNN

TABLE I
CLASSIFICATION RESULTS

Metric SVM KNN
(k=15)

Multilayer
Perceptron

Naive
Bayes

Random
Forest

CC 44.44% 44.44% 41.25% 42.77% 42.77%
AUC 0.594 0.646 0.624 0.654 0.658
KS 0.141 0.180 0.114 0.178 0.156

MAE 0.327 0.323 0.313 0.313 0.320

is very close to the performance of Random Forest. Next are
the models of SVM and MLP, while Naive Bayes model is
the weakest model in this combination of classification of the
given data set.

TABLE II
CLASSIFICATION RESULTS AFTER DATASET SAMPLING

Metric SVM KNN
(k=15)

Multilayer
Perceptron

Naive
Bayes

Random
Forest

CC 57.08% 73.67% 55.40% 43.99% 75.95%
AUC 0.699 0.921 0.735 0.670 0.926
KS 0.352 0.624 0.370 0.206 0.656

MAE 0.311 0.160 0.249 0.310 0.187

Fig. 2 shows the difference in the performance of the
models, i.e. the improvement of the accuracy or the percentage
of correctly classified instances with the original dataset before
sampling, and the dataset after sampling.

Fig. 2. Difference in the accuracy of the models before and after dataset
sampling.

B. Two-phase Classification

Analyzing the errors between the real and predicted classes
during testing, we observed an association between the first
and fourth stage. With this property, we decided to create a
two-phase classification model, where the main problem of
determining the stage of the cancer is divided into solving
two sub-problems. Therefore, we created two sub-groups of
the cancer stages from the resampled dataset, where the first
sub-group combines the first and the fourth stage and the
second sub-group is a compound of the second and third



cancer stage. Fig. 3 provides a visual representation of the
two-phase classification model of CRC stages.

Fig. 3. Visual representation of the two-phase classification model - The first
phase is the detection of the sub-groups, and the second phase separates the
sub-groups into the real (actual) cancer stages. Cancer stage I is the orange
circle, stage II is represented by the yellow circle, stage III is the green one,
and the blue circle is stage IV.

The first stage of the classification model considered the
separation of the instances from the sub-groups. This stage
uses the same machine learning models as in the previous
problem. The results are presented in Table III. Random
Forest, obtained the highest accuracy of 87%, that is, this
algorithm can classify the instances of two sub-groups, with
reasonably high correctness. The other algorithms are not
nearly satisfactory as Random Forest, especially Naive Bayes.

TABLE III
FIRST-STAGE CLASSIFICATION RESULTS IN THE TWO-PHASE

CLASSIFICATION MODEL

Metric SVM KNN
(k=15)

Multilayer
Perceptron

Naive
Bayes

Random
Forest

CC 76.10% 82.57% 75.34% 68.49% 87.21%
AUC 0.663 0.935 0.766 0.699 0.946
KS 0.377 0.615 0.459 0.268 0.700

MAE 0.239 0.186 0.278 0.371 0.211

After the first-stage classification determines the aggregate
class, i.e. the sub-group of the instance, depending on the
identified sub-group, the exact stage of cancer should be
determined. Hence, the next sub-problem required finding two
separate classifiers. The first classification model knows how
to divide the first sub-group into the first or fourth stage
of cancer. Respectively, the second model splits the second
subgroup into the second and third stage of cancer. Again, the
models were built with the same machine learning techniques.

The results of the classification model that distinguish the
first and fourth CRC stage are given in Table IV. This
classification divides the first sub-group. Random Forest again
shows the best performance with an accuracy of 85.32%. Table
V presents the results of the other classification model in
the second-stage that separates the second sub-group into the
second and third CRC stage. As before, Random Forest is
again dominating in the process of separation of the classes,

TABLE IV
SECOND-STAGE CLASSIFICATION RESULTS FOR THE FIRST SUB-GROUP

Metric SVM KNN
(k=11)

Multilayer
Perceptron

Naive
Bayes

Random
Forest

CC 77.06% 83.03% 79.36% 62.84% 85.32%
AUC 0.707 0.946 0.758 0.666 0.956
KS 0.472 0.628 0.538 0.248 0.678

MAE 0.223 0.180 0.115 0.200 0.106

with an accuracy of 83.37%. In the second-stage classification,
KNN, MLP and SVM have notable outcomes, whereas Naive
Bayes is not appropriate for resolving this difficulty.

TABLE V
SECOND-STAGE CLASSIFICATION RESULTS FOR THE SECOND

SUB-GROUP

Metric SVM KNN
(k=9)

Multilayer
Perceptron

Naive
Bayes

Random
Forest

CC 73.80% 79.73% 78.36% 60.59% 83.37%
AUC 0.716 0.916 0.746 0.645 0.923
KS 0.442 0.578 0.553 0.137 0.653

MAE 0.226 0.210 0.220 0.212 0.128

Fig. 4 illustrates the two-phase classification model, with
accuracy performance of each particular classification model
for every sub-task.

Fig. 4. Performance of the models in the individual tasks in the two-phase
classification model.

IV. CONCLUSIONS

By using machine learning techniques, we classify four
stages of colorectal cancer in patients, using the gene ex-
pression of 11 biomarkers obtained by DNA microarray
technology. Recent research has shown that changes in gene
expression are associated with different types of cancer.

The choice of best machine learning algorithm to be applied,
is based on the nature of the problem and the data set that is
used. We used several methods for building the classification
model: KNN, SVM, MLP, Naive Bayes and Random Forest.
With the initial set, we did not obtain good results, however,
when a dataset resampling is applied, the classification signif-
icantly improved. The model with Random Forest stands out



as the best classifier model with an accuracy of 76%, along
with KNN with 74% accuracy, which was not as satisfactory
as we expected.

Considering the unexpected association between the first
and the fourth stage, a two-phase classification model was
created. In the first phase, the model divides the data between
two sub-groups obtained by joining the first and fourth stage
as one sub-group, and the second and third stage as the second
sub-group. As the best classifier for this case, Random Forest
stands out with an accuracy of 87%. The second phase contains
two classifiers to divide each individual subgroup to obtain the
right cancer stage of the instance. Random Forest again shows
the best performance - for the classification of the first and
fourth stage the accuracy is 85%, while for the classification
of the second and third stage of cancer the accuracy is 83%.

Given the results, we can conclude that the ensemble
machine learning methods, represented by Random Forest,
along with slightly worse KNN, provide better modelling of
the CRC biomarkers gene expressions. The importance of
the developed two-phase classification of gene expression for
other cancers or other biomarkers remains to be revealed.

The future work will include a deeper analysis of the
problem and the CRC data. One option to consider is transfer
learning which has the potential of combining previously
gained knowledge and solve new related issues. It is mostly
implemented with Deep Learning architectures, however, Ran-
dom Forests are also capable of model transferring. This can
be very helpful with very small and limited datasets, as in our
case.
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