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Abstract. Blood pressure is one of the most valuable vital signs. Re-
cently, the use of bio-sensors has expanded, however, the blood pressure
estimation still requires additional devices. We proposed a method based
on complexity analysis and machine learning techniques for blood pres-
sure estimation using only ECG signals. Using ECG recordings from
51 different subjects by using three commercial bio-sensors and clinical
equipment, we evaluated the proposed methodology by using leave-one-
subject-out evaluation. The method achieves mean absolute error (MAE)
of 8.2 mmHg for SBP, 8.7 mmHg for DBP and 7.9 mmHg for the MAP
prediction. When models are calibrated using person-specific labelled
data, the MAE decreases to 7.1 mmHg for SBP, 6.3 mmHg for DBP
and 5.4 mmHg for MAP. The experimental results indicate that when a
person-specific calibration data is used, the proposed method can achieve
results close to a certified medical device for BP estimation.

Keywords: Blood pressure - ECG - Machine learning - Complexity anal-
ysis - Classification - Regression - Stacking.

1 Introduction

Blood pressure (BP) increase, hypertension, is one of the key factors for car-
diovascular diseases [22,19]. The recent advances in bio-sensors technology has
brought the opportunity to continuously monitor physiological signals (e.g.,
ECG, PPG, EMG, etc.) and consequently calculate or estimate the vital pa-
rameters: heart rate, respiratory rate, peripheral capillary oxygen saturation
(SpO2) and blood pressure. BP estimation is considered to be a great challenge
since the methodologies reported in the literature [21,23, 13,26, 12] usually re-
quire multiple physiological signals and devices for its estimation. However, in
our previous research we proved that the systolic BP (SBP), diastolic BP (DBP)
and mean arterial pressure (MAP) can be estimated by using only the ECG sig-
nal as a single source of information [24]. The methodology proposed relied on
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a combination of complexity analysis and machine learning (ML) techniques to
build regression models that are able to predict the actual SBP, DBP and MAP
values. By using a train-validation-test evaluation, we achieved a mean absolute
error (MAE) of 8.6 mmHg for SBP, 18.2 mmHg for DBP, and 13.5 mmHg for
the MAP prediction. By applying a probability distribution-based calibration,
the MAE decreases to 7.7 mmHg for SBP, 9.4 mmHg for DBP and 8.1 mmHg
for MAP.

In this paper, we consider a different evaluation of the methodology by
performing leave-one-subject-out instead of the traditional train-validation-test
evaluation and allowing a person-specific calibration to adapt the models to a
particular user. The results obtained show significant improvement, especially
for the DBP and MAP, decreasing the MAE error ~ -10 for non-calibrated DBP
case and ~ -6 for the non-calibrated MAP case. When using a person-specific
calibration, the improvements obtained are ~ -3 for DBP and MAP.

The rest of the paper is organized as follows. The proposed method is briefly
described in Section 2. The experimental results are presented in Section 3,
followed by a discussion in Section 4 and the conclusions of the study given in
Section 5.

2 Methods and Materials

2.1 Methods

The complete methodology is comprehensively explained in [24] and is briefly
depicted in Figure 1. Raw ECG signals are divided into 30-seconds segments,
each accompanied with SBP and DBP values. Those values pass through the
preprocessing method, labelling the segments into the appropriate BP class and
applying the low-pass filter. Hereupon, the signals are forwarded to the module
for complexity analysis and feature extraction. Having computed the complexity
metrics (signal mobility, signal complexity, fractal dimension, entropy and auto-
correlation), the feature vectors are inputted to the classification module, which
implements a stacking ML approach. The output of the classification module,
in a combination with the extracted features, is inputted to a regression mod-
ule which outputs the actual SBP and DBP estimation. The last module is a
calibration module which allows for person-specific calibration. The calibration
is performed by considering the mean error of the predictions for five randomly
selected instances (measurements) of each subject, compared to the actual ab-
solute SBP and DBP values. The error is either added or subtracted from the
predicted values, depending on the models tendency to predict higher or lower
values.

2.2 DMaterials

The database we created for this research (publicly available online [1]) is built
by using three different commercial ECG sensors (whose reliability is proven in
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Fig. 1. Proposed methodology for blood pressure estimation.

previous studies [27], [3], [20], [2], [18], [5], [14], [6], [15], [11]) and the reference
SBP and DBP values measured by using an electronic sphygmomanometer. The
second database that we use to additionally evaluate the methodology is obtained
from the Physionet database and is created by using clinical equipment [9]. A
summarized information of the datasets is provided in the following Table 1. Most
of the participants are healthy (33). The rest 18 unhealthy participants were
measured in hospital conditions, 11 of which are with cardiovascular problems
and 7 are with brain injuries.
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Table 1. Datasets summary information.

Source Num. part| Age Status
Cooking hacks sensor [10] 16 16 - 72 healthy
1800 eMotion FAROS [4] 3 25 - 27 healthy
Zephyr Bioharness module [25] 25 20 - 73|14 healthy, 11 unhealthy
Charis Physionet database [17] 7 20 - 74 brain injuries

3 Results

Four types of experiments are performed: classification, regression, feature anal-
ysis and devices evaluation. The classification experiments were performed to
measure the ability of the classification algorithms to estimate BP class (hy-
potension, normal or hypertension - described in details in [24]) and were needed
as an additional input for the regression algorithms. The regression experiments
provide the error measurement for predicting the actual BP values of the method.
Here we present three types of experiments, leave-one-subject-out (LOSO) inter-
dataset, LOSO within dataset and leave-one-dataset-out (LODO). The Feature
analysis experiments were performed to analyze the quality of the chosen features
for the specific tasks of BP estimation. Eventually, the evaluation experiments
were performed to provide an insight into devices evaluation, i.e. the performance
of the wearable technology vs. the validated and reliable clinical monitors. The
details for each experiment are in the following subsections.

3.1 Classification experiments

The preprocessing and the feature extraction phase produced a total number of
3129 feature vectors mapped into three BP classes (hypotension - 0, normal - 1
and hypertension - 2). When developing both the classification and the regression
models, we used LOSO cross-validation, meaning that we trained 51 models by
including 50 subjects in the training set and leaving 1 subject out for testing. The
performance of the stacking ML solution used for the classification was evaluated
through the F-measure as a balanced mean between precision and recall for each
class, and the overall accuracy of the classifier. The recall shows the proportion
of the given class cases correctly predicted among all the instances that belong
in the given class:

True_positives

Recall = (1)

Precision is a measure showing the proportion of the given class cases cor-
rectly predicted among all instances predicted to belong in the given class:

Real_positives

True_positives

(2)

Precision =
Predicted_positives

F— measure — 2 x Precision * Recall 3)
" Precision + Recall

The stacking design produced the results presented in Table 2.
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Table 2. Stacking approach results.

Class/Metric|Precision|Recall| F-measure|Accuracy
0 0.71 0.67 0.69
1 0.58 0.89 0.71 0.73
2 0.94 0.63 0.76

3.2 Regression experiments

The predicted BP classes were used to extend the initial feature vectors and pre-
pare the data for regression, as depicted in Figure 1. Following the same principle
for LOSO cross-validation, we evaluated three distinct models for predicting the
SBP, DBP and MAP. To improve the prediction, we applied a calibration pro-
cedure as described in the Section 2. The results are sublimated in Table 3. The
regression models were evaluated by using the Mean Absolute Error (MAE) and
Root Mean Squared Error (RMSE). MAE is the average error obtained from
the absolute differences between the actual, a;, and the predicted values p;, for
i = 1,,n, where n is the number of instances within a subject. MAE weights all
the differences equally and is calculated as:

MAE = ?‘pi_a” (4)
n
To obtain higher weight for the large errors, which is important for the BP
problem, the differences between the actual absolute and the predicted values
are first squared, then averaged, and afterwards a square root of the average is
performed. The RMSE is calculated according to the following equation:

n .2
RMSE — ) 21 1pi — il (5)
n

Table 3 presents the MAE and RMSE evaluation for SBP, DBP and MAP.
For each subject, ID =1, ...,51, and the errors from both the prediction and the
calibration are presented for all three cases. The results show that the calibration
goes in favor of the prediction by reducing the overall MAE from 8.24 + 5.34 (u
+ o) to 7.11 £ 5.29 for the SBP, from 8.75 £ 7.90 to 6.28 £+ 5.02 for the DBP
case, and from 7.92 £ 9.66 to 5.35 £ 4.16 for the MAP case.

Given the four datasets used in the experiments, two more experiments were
performed using LOSO within a dataset and LODO evaluations. The results for
the LOSO within dataset are presented in Table 4. The different datasets are
labelled 1-4 (according to the device used for the measurements). Considering
the obtained errors, for the SBP the MAE of 8.05 is close to the mean MAE
obtained from the LOSO testing in Table 3. For the DBP case, the most critical
datasets are number 2 and 4. Perhaps, this is due to the reduced number of
participants available in those datasets. However, the calibration method is still
able to perform well and provides a mean MAE of 6.5 £+ 0.99.



6 M. Simjanoska et al.

Table 3. MAE and RMSE evaluation for SBP, DBP and MAP.

SBP DBP MAP
Prediction | Calibration | Prediction | Calibration | Prediction | Calibration
MAERMSEMAE|RMSEMAE|RMSE MAE| RMSE MAE RMSE MAE RMSE
10.8 | 11.3 3.1 3.5 17.0 | 15.5 2.9 3.2 15.8 | 14.4 3.1 3.2
9.7 10.6 | 10.1 | 10.1 4.9 6.5 4.2 4.6 9.3 9.9 4.2 4.7
5.8 6.8 6.8 9.0 6.3 7.0 2.8 3.3 7.5 7.7 2.3 2.5
5.3 5.3 5.3 5.3 4.9 5.0 4.9 5.0 5.6 5.7 5.6 5.7
13.0 7.8 10.0 5.6 7.3 4.6 5.9 5.7 7.1 6.1 6.9
125 | 13.0 2.8 3.8 6.2 8.0 4.0 5.1 9.3 10.5 4.7 5.3
6.3 6.7 2.6 3.7 4.5 5.6 3.6 4.5 5.3 5.8 2.5 3.2
6.7 7.5 6.3 7.5 5.5 7.7 5.2 6.3 4.5 5.6 3.4 4.0
9 5.0 6.4 4.6 6.2 4.5 5.3 3.1 3.5 4.0 4.5 4.6 5.5
10 | 5.1 4.9 5.0 5.0 7.6 74 74 7.7 6.2 7.8 6.5 8.6
11 20.9 19.8 4.8 7.0 15.5 18.4 5.2 10.2 20.8 18.2 7.1 7.3
12 6.1 7.2 6.2 7.1 2.1 2.4 2.4 2.3 3.4 3.3 3.7 3.5
13 | 10.2 9.2 3.4 3.3 8.2 7.2 4.0 5.1 10.9 | 10.5 5.2 5.2
14 | 10.2 | 13.7 | 169 | 19.0 8.6 12.2 9.9 11.9 6.5 9.1 144 | 16.1
15 | 12.3 | 14.8 9.2 11.6 | 159 | 180 | 10.5 | 10.9 | 11.1 | 14.8 8.0 10.5
16 19.0 21.2 18.1 21.4 11.7 10.7 11.3 10.1 7.2 9.5 7.1 9.7
17 | 8.6 9.8 10.9 | 11.0 | 15.4 | 15.6 4.1 4.8 7.7 7.5 3.1 3.5
18 1293 | 179 | 31.3 | 20.0 | 526 | 33.6 | 354 | 24.8 | 68.5 | 32.5 | 25.6 | 12.6
19 | 7.1 7.7 7.1 7.9 20.2 | 21.5 6.1 7.5 15.0 | 14.6 3.8 4.8
20 | 7.1 7.2 5.2 5.8 6.7 7.5 5.7 6.2 7.6 7.5 3.4 3.3

—
@)

[N R N O
=
e
o

45 | 16.0 | 203 | 11.4 | 13.2 | 12.1 | 15.2 9.6 11.2 | 127 | 15.8 | 134 | 16.3
46 | 10.2 | 12.6 6.7 13.2 3.6 4.1 4.9 5.3 7.0 7.2 4.2 5.4
47 3.0 3.6 4.5 5.2 6.2 6.7 2.2 2.5 2.4 3.0 2.2 2.7
48 4.4 5.1 4.3 5.8 172 | 178 3.9 4.7 11.8 | 12.6 4.1 5.2
49 | 11.6 | 16.2 | 11.4 | 158 | 20.3 | 21.0 5.6 6.8 152 | 16.8 7.0 7.8
50 8.2 9.8 5.0 6.1 8.5 10.4 8.8 10.3 8.7 11.0 8.9 11.0
51 5.1 6.4 4.2 5.4 122 | 14.3 6.2 7.7 7.4 8.7 4.5 5.5
Mean| 8.2 8.8 7.1 7.8 8.7 9.1 6.3 6.7 7.9 7.9 5.4 5.8
SD | 5.3 5.0 5.3 4.8 7.9 6.1 5.0 3.9 9.7 5.5 4.2 3.5

The results for the LODO are presented in Table 5. Given the MAE and
RMSE, it can be perceived that if the datasets are completely unknown to the
classifier, then the model performs worse even in the calibration case.
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Table 4. Leave-one-subject-out within dataset results.

Prediction | Calibration

BP Dataset |\, \ o1 g MSE|MAE/RMSE

1 8.6 9.8 5.8 7.1
2 8.0 8.9 6.1 6.6
SBP 3 7.5 7.8 7.3 7.7
4 8.1 10.3 7.6 10.1
1 7.4 8.5 5.5 6.6
2 14.9 | 15.5 6.5 7.4
bBP 3 6.4 7.0 6.4 6.8
4 11.8 | 134 7.9 9.7

Table 5. Leave-one-dataset-out results.

Prediction | Calibration
MAE|RMSE MAE|RMSE
SBP| 13.0 15.7 10.2 12.6
DBP| 12.3 14.9 14.3 17.0

BP

Finally, Table 6 presents a summarization of the results for the three differ-
ent evaluations: leave-one-subject-out inter-dataset, leave-one-subject-out within
dataset and leave-one-dataset-out. The main three observations are:

1. For both the SBP and DBP prediction, the LODO evaluation results are
worse compared to the LOSO inter-dataset and within dataset.

2. Regarding the LOSO evaluations, for the SBP prediction the within dataset
models have slightly better MAE, but worse RMSE, meaning that the models
(within dataset and inter dataset) perform similarly.

3. However, for the DBP prediction, the inter-dataset models yield the best
results.

Table 6. Comparison of the evaluation metrics (MAE and RMSE) for the three eval-
uations: LOSO inter-dataset, LOSO within dataset and LODO.

BP | Evaluation type Prediction Calibration
w(MAE) |1(RMSE) |[u(MAE) |1 (RMSE)
LOSO inter-dataset 8.2 8.8 7.1 7.8
SBP |[LOSO within dataset 8.0 9.2 6.7 7.9
LODO 13.0 9.2 6.7 7.9
LOSO inter-dataset 8.7 9.1 6.3 6.7
DBP|LOSO within dataset 10.1 11.1 6.7 7.6
LODO 12.3 14.9 6.6 7.6

The differences between the LOSO and LODO are visualized in Figure 2
and Figure 3, correspondingly. Both figures present the SBP absolute values,
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rather than the absolute errors as provided in Table 3, of a patient referred to
as patient X, from the Charis/Physionet database. The patient is chosen to be
suitable since there is high variability in the BP values which is appropriate to
visually represent whether the predictions follow the trend of the actual absolute
values. The real BP are marked with a black line. The blue line represents the
stacking approach predictions, and the green line represents the predictions after
the calibration. The red line represents the performance of a simple classifier
the one that always predicts the mean value from the training set. The x-axis
shows the continuous instances (samples) for the particular patient and the y-
axis presents the absolute values of the SBP in mmHg. In Figure 2 it can be
perceived that in case of LOSO, the stacking classifier (before and after the
calibration) follows the tendency of the actual BP values. On the contrary, when
LODO, the stacking classifier (the blue line) is unable to predict better than the
simple classifier predicting the mean BP values (the red line). Considering the
results, it can be concluded that the stacking classifier needs to be provided with
a training instance from the particular dataset before accurate predictions can
be made.

Leave-one-subject-out
180

170
160

150

140 N\

130

Blood pressure in mmHg

120

110
1 6 11 16 21 26 31 306 41 46 51 56 61 66 71 76 81 86 91

Multiple instances of a patient

—— Absolute SBP values

Simple classifier Stacking classifier Stacking calibrated classifier

Fig. 2. Leave-one-subject-out for patient X.

3.3 Feature analysis

Observing the experimental results, it can be noticed that the models are able
to approximate the actual absolute BP values. In order to provide more insights
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Fig. 3. Leave-one-dataset-out for patient X.

into the usefulness of the complexity features, we provided additional analysis
comparing each feature value with respect to the real BP values. Considering a
sequence of actual BP values within 6 hours period, in Figure 4 we depicted the
features values (y-axis) depending on the BP values sorted ascendingly. It can
be seen that the increase in the BP values, influences the absolute value and the
variability of the features.

Complexity features changings
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Fig. 4. BP changings tracking for patient X.
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Next, in Figure 5 we present box-whisker plots to visualize the shape of the
distributions, the mean value, and the variability of each complexity feature with
respect to the three BP classes. It can be seen that for some of the features, e.g.,
Mobility, Complexity and Entropy, just the mean value itself has a discriminatory
power for the three classes. In addition to the mean value, the variability of the
feature values has some additional information. Even though, in some cases, the
variability of the feature values may indicate noise in the data.

Mobility Complexity
M class1 M class2 M class3 M class1 M class2 M class 3

1.6 2.5
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Fig. 5. Box-Whiskey plots per class for the complexity features.
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3.4 Devices evaluation

Even though all participants groups are measured with different devices, we
provide a comparison between the performance of the used wearable bio-sensors
and the clinical monitors regularly used in medical practice, regarding our re-
sults. The comparison is made as a ratio between the prediction errors obtained
from the experiments. Considering the gained measurements, the groups of par-
ticipants (healthy, with brain injury and unhealthy), and the types of devices
(bio-sensors and clinical monitors), we have compared the results for two main
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Table 7. Concession difference.

Prediction (P) Calibration (C) . .
BP |Group|y 1 g (M)[RMSE (R)|R - M[MAE (M)|RMSE (R)[R - m|Ratio P|Ratio C
WS 8.01 8.87 0.87 6.41 7.14 0.74
SBP| o 8.07 10.31 2.24 7.63 10.11 2.49 | 26 3.4
WS .04 9.59 1.55 7.02 8.63 1.61
DBP| 11.82 13.37 1.55 7.88 9.68 180 | 1O 11

groups. The first group encompasses the healthy and unhealthy participants mea-
sured with wearable sensors technology (WS), and the second group comprise
the participants with brain injuries measured with the regularly used clinical
monitors (CM) in the hospitals. In Table 7 we have used the differences between
the RMSE and MAE (R-M) to calculate the differences within the calibration
and the prediction models in order to compute the ratios of errors between WS
and CM. The differences between the RMSE and MAE were used to show the
disparity of the actual SBP and DBP outputs and the predicted/calibrated out-
come in the participants readings. The calculations show that the errors are
approximately the same for all the participants. Having computed the difference
R - M for both the prediction and the calibration models, we calculated the ra-
tios for both cases. Ratio P for SBP shows that the CM group suffers 2.6 times
worse errors than the WS group; whereas in the DBP case the errors are the
same. Ratio C is in regard of the condition after the calibration - the CM group
suffers 3.4 times worse errors (even more than in the prediction case); whereas
for DBP the errors are only 1.1 time worse.

4 Discussion

Our BP estimation system based on ECG sensor inputs enabled the reliable
monitoring of various BP parameters on data obtained from 51 different subjects
and 4 different ECG sensors. In the traditional train-validation-test evaluation
of our method [24], we achieved MAE (non-calibrated/calibrated) measured in
mmHg of 8.6/7.7 for SBP, 18.2/9.4 for DBP, and 13.5/8.13 for MAP. Performing
a completely different approach to evaluate the methodology as presented in this
paper, it turned out that the performance can be significantly improved. The
error on an unseen dataset, using another sensor, is 13 for the SBP and 12.3
for the DBP prediction (see no calibration LODO results in Table 5). If sensor-
specific labelled dataset is provided, the MAE decreases to 8.2 for SBP and
8.7 for DBP prediction (see no calibration LOSO inter-dataset results in Table
3). Moreover, if person-specific labelled data is provided, the MAE decreases
to 6.7 for SBP and 6.6 for DBP (see calibration results for LODO in Table
6). These results are close to a certified medical device for BP estimation (£5
mmHg, and the SD within 8 mmHg according to BHS and AAMI standards [16]).
Considering the time performance of the method, once the prediction model is
built, the predictions can be considered real-time calculations.
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5 Conclusions

Our method estimates SBP, DBP and the MAP from ECG sensor data. The
method was tested on 51 different subjects and 4 different ECG sensors - part of
which we obtained from online database and the rest from the database that we
created. By performing leave-one-subject out evaluation, the method achieved
results close to a certified medical device, especially when sensor-specific and
person-specific labelled data is provided.

The proposed solution has promising real-world applications in civilian and
military environments, however it should be tested with a dataset containing
hundreds of diverse participants in variety of medical conditions. In the future
work, the method could be enriched by an activity recognition module [7], or
context-based BP estimation [8].
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