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Abstract—Cyberbullying is a form of bullying that takes 

place over digital devices. Social media is one of the most 

common environments where it occurs. It can lead to serious 

long-lasting trauma and can lead to problems with fear, anxiety, 

sadness, mood, energy level, sleep, and appetite. Therefore, 

detection and tagging of hateful or abusive comments can help 

in the mitigation or prevention of the negative consequences of 

cyberbullying. This paper evaluates seven different 

architectures relying on Long Short-Term Memory (LSTM) 

and Gated Recurrent Unit (GRU) gating units for classification 

of comments. The evaluation is conducted on two abusive 

language detection tasks, on a Wikipedia data set and a Twitter 

data set, obtaining ROC-AUC scores of up to 0.98. The 

architectures incorporate various neural network mechanisms 

such as bi-directionality, regularization, convolutions, attention 

etc. The paper presents results in multiple evaluation metrics 

which may serve as baselines in future scientific endeavours. We 

conclude that the difference is extremely negligible with the 

GRU models marginally outperforming their LSTM 

counterparts whilst taking less training time. 
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I. INTRODUCTION 
Cyberbullying is the use of technology to harass, threaten, 

embarrass, or target another person. It includes posting online 
threats and mean, aggressive, or rude texts, personal 
information, pictures, or videos designed to hurt or embarrass 
someone else. Online bullying can be particularly damaging 
and upsetting because it is usually anonymous, and therefore, 
hard to trace and control. Online bullying and harassment can 
be easier to commit than other acts of bullying because the 
bully does not have to confront his or her target in person. 
Online bullying, as any other kind of bullying, can lead to 
serious long-lasting problems. The stress of being in a 
constant state of upset or fear can lead to problems with 
mood, energy level, sleep, and appetite. It also can make 
someone feel jumpy, anxious, or sad. If someone is already 
depressed or anxious, cyberbullying could lead to much more 
serious consequences. 

For these reasons, providing a systematic solution that can 
recognize and tag textual comments that represent some sort 
of hateful or abusive content can be valuable in the prevention 
and mitigation of their consequences. [1] 

Previous works have already applied various approaches 
aiming to tackle this kind of tasks. Most successful 
approaches for this task usually employ Recurrent Neural 
Networks (RNNs). RNNs are Deep Neural Networks (DNN) 
that are adapted to sequence data, i.e. to input and output of 
variable length. RNNs contain loops in the hidden layer to 
retain information from a previous time step which will later 

be used to predict the value of the current time step. This 
retention of information makes the neural networks 
extremely deep and thus makes them difficult to train to 
capture long-term dependencies because the gradients tend to 
either vanish or explode and thus the RNNs are prone to 
exploding or vanishing gradients. [1] 

The most prominent ways to reduce the negative effects 
of training RNNs are either to design a better learning 
algorithm than stochastic gradient descent, such as a powerful 
second-order optimization algorithm or design an improved 
activation function such as the LSTM architecture, which was 
developed and proposed in [2] which proves to be an effective 
way of dealing with the vanishing gradient problem and thus 
became a standard, or the GRU architecture which was 
proposed in [3] and shares many similarities to the LSTM 
architecture whilst still employing different circuitry. Other 
ways of dealing with the problems faced by RNNs are to 
perform regularization of the RNN’s weights that ensures that 
the gradient does not vanish, to entirely stop learning the 
recurrent weights and finally, to very carefully initialize the 
RNN’s parameters, such as in [4] and [5]. 

In this paper, we attempt to evaluate the two most 
prevalent architectures as answers to dealing with the 
vanishing gradient problem whilst training on sequential 
data. The approaches we have chosen are LSTM and GRU in 
the context of other components. Our aim is to see which 
architecture performs better when its most defining 
component is an LSTM module, or a GRU module. We 
perform this evaluation on two abusive language detection 
tasks whilst situating the most defining component in 
architectures which incorporate various neural network 
mechanisms such as bi-directionality, regularization, 
convolutions, attention etc. We draw our conclusions on the 
basis of a variety of evaluation metrics, which may 
subsequently serve as baselines for future research. 

II. RELATED WORK 
There exist many empirical comparisons performed on 

RNN architectures, such as LSTM or GRU. In [2], the authors 
evaluated multiple models, namely LSTM, GRU and tanh-
RNN, with all approximately the same number of parameters 
and trained using RMSProp on a suite of sequence modelling 
tasks, namely, tasks of polyphonic music modelling and 
speech signal modelling. The authors concluded that 
although GRU produced superior results to the other models 
overall, the difference was not too great as to lead to a firm 
conclusion of which model is best.  

Deeming the LSTM’s architecture to be ‘ad-hoc’, in [3], 
the authors perform an ablation study and an empirical 
evaluation of LSTM, GRU and LSTM-mutated architectures 
which they produced using an evolutionary architecture 
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search, more extensive than the architecture search conducted 
by [4] in which the authors performed fewer experiments 
with small models. From the ablation study and model results 
from [3], it was shown that the forget gate in the LSTM 
architecture is most important and that its removal results in 
drastically inferior performance, except in language 
modelling. Furthermore, the authors noted that initializing the 
bias of the forget gate to be a number between 1 and 2 leads 
the LSTM models to have very comparable results to that of 
the GRU models, thus closing the performance gap between 
the LSTM and GRU models. 

In [5], it is shown that LSTM models with a large number 
of parameters take up a considerable amount more training 
time than their GRU counterparts whilst still producing 
similar results. Their models used ReLu as an activation 
function and the Adam optimization algorithm.   

In comparison to [2], we utilize more appropriate 
parameter initialization strategies, employ the use of a more 
robust parameter optimization algorithm and a plethora of 
architectures leading to perhaps a more reliable empirical 
comparison between the LSTM and GRU components. 

III. METHODOLOGY 
The two data sets used within this study, namely the 

Wikipedia and Twitter data sets. Further, this section 
describes the data preprocessing, the appropriate evaluation 
metrics for both data sets and describes the generalized model 
architectures and the specific LSTM or GRU models which 
are manifestations of those architectures. 

A. Toxic Wikipedia Comment Data Set 

The data set, described in Table I, used to train and 

evaluate the models is the same one used in [6] and offered 

publicly as part of the Toxic Comment Classification 

Challenge competition. [7] The multi-labeled data set is 

comprised of a training set containing 159571 entries and of 

a testing set comprised of 153164 entries. The six labels, each 

presented in a separate column that are provided in the 

training set and need to be predicted in the testing set, are the 

following: 'toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 

'identity_hate'. From the entire training set, only 16225 

entries are labeled with any of the aforementioned labels, 

meaning that the labels often overlap. The training set has a 

class-imbalance problem, in relation to this, the authors of [8] 

present a “real-life” distribution of abusive language use via 

surveying available abusive language data sets. From these 

data sets, one can see that they are usually comprised of an 

overwhelming majority of non-abusive entries. Additionally, 

sentence length does not seem to be a significant indicator of 

toxicity which is in accordance with the conclusion of [9], 

which is that word-length distribution features provide little 

to no improvement in a model’s predictive abilities. 

TABLE I.  LABELS FOR THE TOXIC WIKIPEDIA COMMENTS TRAINING 

DATA SET (MULTI-LABELED DATA SET WITH OVERLAPPING LABELS) 

Label toxic severe

toxic 

obscene threat insult identity

hate 

Count 15294 1595 8449 478 7877 1405 

% 9.6 1.0 5.3 0.3 4.9 0.9 

 
1 https://github.com/cbaziotis/ekphrasis  

B. Twitter Data Set  

We use the same data set as [10], which is comprised of 

approximately 100000 tweets of which only 61194 were able 

to be retrieved using the Twitter API. Of the ones retrieved, 

in a single class column (unlike the Wikipedia data set which 

separates each label in a separate column), 63% are annotated 

as ‘normal’, 19% as ‘abusive’, 14% as ‘spam’ and 4% as 

‘hateful’ with exact counts shown in Table II.  

Each tweet text was further processed using a tweet 

normalization tool1 which directly optimizes the vocabulary 

and in turn the models’ power to generalize by replacing 

usernames with a single token ‘<user>’ and changing words 

such as ‘goooood’ to ‘good’ for example. 

The data set was split into a training, validation and test 

data set each consisting with 76%, 4% and 20% of the data 

respectively. 

TABLE II.  LABELS FOR THE TWITTER DATA SET 

Label abusive hateful spam normal 

Count 11766 2461 8561 38407 

% 19.2 4.0 14.0 62.8 

C. Data Preprocessing 

Each of the comments was represented with a padded 
indexed representation of itself. Keras2 Tokenizer was used 
to perform the tokenization, indexing and padding of each 
comment, in which the vocabulary was limited to the most 
frequent 20000 tokens and each comment was padded to a 
maximum length of 200 indices. 

D. Evaluation Metric 

1) Toxic Wikipedia Comments Data Set 

The models had to predict a probability for each of the six 

possible columns, each representing one of the labels. This 

was evaluated using the area under the receiver operating 

characteristic curve (ROC-AUC) which was calculated after 

each epoch for each of the models to get the metrics for the 

training set predictions. Additionally, the ROC-AUC 

evaluations are also provided for the private and public 

Kaggle testing sets evaluated by the Kaggle platform. 

Although we deem the classification metrics used on the 

Twitter data set as more appropriate, we could not calculate 

the same due to not having the corresponding labels for the 

test set, thus we only resort to the ROC-AUC scores returned 

for each submission of predictions by the Kaggle platform in 

the form of private and public scores. 

2) Twitter Data Set 
The models had to predict a probability for each of the 

four possible labels with the prediction being a one-hot 
encoded vector whose only active components correspond to 
the label assigned with the highest probability. This was 
evaluated using the following metrics: accuracy, F1-micro, 
F1-macro, weighted precision, and weighted recall scores. 

E. Models 

Each of the models was constructed using the python deep 
learning library Keras. In total, there are seven model 
architectures containing a recurrent neural network layer 
which manifests a total of 12 models, that is, all the model 
architectures once with an LSTM component as the most 
representative component, and similarly, once with a GRU 

2 https://github.com/keras-team/keras 
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component. Each of the architectures use an Embedding layer 
which transforms the indexed words with a vector 
representation of size 50. We chose not to work with pre-
trained word embeddings as the primary goal of our 
experimentation is to isolate the benefits of different 
architectures. The architectures described through their dual 
manifestations are: 

1. (unidirectional) LSTM / GRU – Unidirectional approach 
to the language task (Fig. 2).  

2. (bidirectional) Bi-LSTM / Bi-GRU – A bidirectional 
variant of the first model architecture (Fig. 2). 

3. (bi-then-conv) Bi-LSTM-CNN / Bi-GRU-CNN – 
Following the bidirectional recurrent neural network 
layer, the model extracts one-dimensional convolutions, 
performs global average pooling and global max 
pooling, concatenates them and used the resultant vector 
to infer a prediction (Fig. 3). 

4. (bi-conv-uni) Bi-LSTM-CNN-LSTM / Bi-GRU-CNN-
GRU – In addition to the Bi-RNN-CNN architecture we 
add another RNN component that attempts to learn on 
the convolved information and afterwards infer a 
prediction (Fig. 4). 

5. (convolutional) Multi-CNN-Bi-LSTM / Multi-CNN-Bi-
GRU – Contrary to some of the previous architectures, 
we use one-dimensional convolutional layers of kernel 
sizes 1, 2, 3 and 5 with the hopes to derive unigram, 
bigram, trigram and 5-gram features which shall later be 
used in training the RNN component of the architecture 
(Fig. 5). 

6. (conv-attention) Conv-Att-LSTM / Conv-Att--GRU – 
Two pairs of a kernel-size-three convolutional layer and 
max-pooling layer precede an attention mechanism right 
before the RNN component (Fig. 6). 

7. (attention) Attention-LSTM / Attention-GRU – Only an 
attention mechanism is added before the RNN 
component (Fig. 7). 

In Figures 2 through 7, the shape of the tensor is described 
below the name of the component in the architecture.  

Each of the models is trained for three epochs with a batch 
size of 256 and optimized with an Adam optimizer with a 
default learning rate of 0.001 on Google Collaboratory 
Tensor Processing Unit (TPU) runtime, which most likely 
offered a TPU v2 device with 8 GiB of high-bandwidth 
memory, two TPU cores and one matrix unit for each TPU 
core. For the Toxic Wikipedia Comments data set, as each 
label is presented in its separate column, the output layer 
utilizes a sigmoid function, thus it outputs independent 
probabilities for each label-column, this type of output is in 
tandem with a binary cross-entropy loss function. For the 
Twitter data set, the output layer utilizes a Softmax function 
which is paired with a categorical cross-entropy loss function 
ensuring the model can assign a probability for each possible 
label. The rate for any drop-out mechanism, including the 
recurrent drop-out, ranges from 0.1 to 0.2.  

According to the example of [11], each Batch 
Normalization layer has been positioned before any singular 
Drop-Out layer. For the recurrent neural networks, the 
activation function is tanh and the recurrent activation 
function is Sigmoid. All other hidden layers have ReLu as an 
activation function.  

Inspired from [12] and [13], the layers using the ReLu 
activation function are initialized with a He uniform 
distribution, whilst the others are initialized with a Glorot 
uniform distribution. 

It is important to note that Keras follows the advice from 
[3] and initializes the bias of the LSTM forget gate to 1. 

 
Fig. 2. Architecture for the LSTM and GRU models, as well as their 

Bidirectional alternatives 
 

 
Fig. 3. Architecture for the bi-LSTM-CNN and bi-GRU-CNN models 

 

 
Fig. 4. Architecture for the bi-LSTM-CNN-LSTM and bi-GRU-CNN-

GRU models 
 

 
Fig. 5. Architecture for the multi-CNN-bi-LSTM and multi-CNN-bi-

GRU models 

 
Fig. 6. Architecture for the conv-att-LSTM and conv-att-GRU models 

(the red sections highlight the attention mechanism) 

 

 
Fig. 7. Architecture for the attention-LSTM and attention-GRU models 

(the red sections highlight the attention mechanism) 



IV. RESULTS 
Concerning the Toxic Wikipedia Comments data set, in 

Fig. 8 we present the ROC-AUC scores for each model for 
each of the three epochs on a validation data set and the 
Kaggle private and public testing data sets. We deem the 
private testing data set ROC-AUC score as most 
representative of the model’s power to generalize as performs 
its evaluation on a testing set not publicly provided. 

Concerning the Twitter data set, in Fig. 9 we present the 
aforementioned metrics for each of the models. The authors 
of [14] and [15] note that macro metrics provide a better sense 
of effectiveness on the minority classes in a class-imbalanced 
problem, thus we deem the F1-macro score as the most 
relevant indicator. 

 

Fig. 8. ROC-AUC scores for each model on the Toxic Wikipedia 

Comment data set 

 
Fig. 9. Accuracy, F1-micro, F1-macro, precision and recall scores for 

each model on the Twitter data set 

 

Our findings are summarized below: 

● Each of the models, for both data sets, began to 
overfit after the second epoch of training, except for 
the only-attention models. Possible causes for this 
are presented in Section V. 

● Judging the models on both data sets, looking at the 
private score for the Toxic Wikipedia Comments 
data set, and the F1-Macro score for the Twitter data 
set and awarding points to each recurrent neural 
component whenever its model scores better than its 
counterpart, we can say, although the differences are 
negligible, the GRU models outperformed the 
LSTM models. The scores are presented in Table III 
and Table IV, for the Wikipedia and Twitter data 
sets, respectively. 

● In terms of the number of parameters, the LSTM 
models have significantly more trainable parameters 
than their GRU counterparts. Details can be found 
in Table VI. 

● In terms of training time, which is closely related to 
the number of trainable parameters, the GRU 
models always finished their training faster than 
their LSTM counterparts. Details can be found in 
Table V. 

● The simpler architectures got the best scores, with 
the best model for the Wikipedia data set being the 
Bi-GRU model achieving a private score of 0.975, 
closely followed by the unidirectional GRU model. 
For the Twitter data set the best model being GRU, 
with 0.631 F1-Macro score is followed by Bi-
LSTM-CNN-LSTM with 0.626 F1-Macro score.  

● The conv-attention and attention architectures 
trained for significantly less time while achieving 
decent results, yet still inferior to the rest of the 
evaluated models. Section V gives possibilities to 
why the attention-including architectures noticeably 
underperform in comparison to the other 
alternatives. 

V. DISCUSSION AND FUTURE WORK 

The authors of [6], which contributed the Wikipedia data 

set, managed to obtain a ROC-AUC score of 0.971 using a 

DNN architecture with character n-grams. To contrast this, a 

more traditional machine learning approach can be found in 

[16], which uses feature construction analogous to [17] which 

achieved a ROC-AUC score of 0.89 using a logistic 

regression classifier. Evidently, the Bi-GRU model, with a 

score of 0.975 here performs sufficiently well with both of 

these attempts. 

Regarding the Twitter data set, which is differently 

annotated as in [14] or [15], our best model, being the 

unidirectional GRU, achieved 0.63 F1-Macro score. Even 

though it does not outperform [18], it does compare well with 

the reported [19] F1-Micro score of 0.827, whilst our Bi-

GRU has 0.802.  

Regarding the underperformance of the attention-based 

models, one possibility might be due to the use of a single 

attention vector which is shared across the input dimensions. 

In the computation of the attention vector is a mean operation 

which possibly cumulatively worsens the feature vectors. 

Regarding future work, further empirical evaluations 

may be performed on the current model architectures using 

various pre-trained embeddings. Additionally, these 

evaluations may incorporate different types of data sets and 

different model architectures. Theoretical analysis also may 

be conducted as well as an ablation study with the goal of 

forming a more concrete and reliable comparison. This could 

be done in the form of a survey in which the various findings 

are collected, and the conclusion is more significant. The 

algorithms may also be adapted for real-time classification or 

abusive language detection, as well as employed by in-

production platforms. 

VI. CONCLUSION 
In the context of the two abusive language detection tasks, 

the difference between the LSTM models and their GRU 
counterparts is extremely negligible. Still, the GRU models 
train faster due to the smaller number of trainable parameters 
and thereby, overall, outperform the LSTM models. In 
agreement with the results obtained by [2], we cannot make 
a firm conclusion on which of the gating units is better.  



TABLE III.  SCORES ON THE TOXIC WIKIPEDIA COMMENTS DATA 

SET (LSTM IS SUPERIOR IN CELLS HIGHLIGHTED WITH BOLD, 
GRU IS SUPERIOR IN CELLS HIGHLIGHTED WITH ITALIC) 

Models epoch 1 epoch 2 epoch 3 private public 

lstm 0.9732 0.9798 0.9815 0.9737 0.9734 

gru 0.9738 0.9787 0.9812 0.9738 0.9748 

bi-lstm 0.9737 0.9777 0.9810 0.9727 0.9717 

bi-gru 0.9772 0.9809 0.9818 0.9751 0.9775 

bi-lstm-cnn 0.9749 0.9773 0.9787 0.9694 0.9679 

bi-gru-cnn 0.97478 0.9753 0.9766 0.9706 0.9695 

bi-lstm-cnn-

lstm 
0.9713 0.9750 0.9772 0.9661 0.9648 

bi-gru-cnn-gru 0.9764 0.9784 0.9815 0.9710 0.9700 

multi-cnn-bi-
lstm 

0.9704 0.9764 0.9759 0.9624 0.9615 

multi-cnn-bi-

gru 
0.9728 0.9750 0.9757 0.9609 0.9595 

lstm-conv-att 0.9168 0.9359 0.9386 0.9139 0.9105 

gru-conv-att 0.9307 0.9456 0.9466 0.9220 0.9196 

lstm-attention 0.7872 0.8126 0.8188 0.7884 0.7924 

gru-attention 0.7832 0.8168 0.8245 0.7988 0.8065 

TABLE IV.  SCORES ON THE TWITTER DATA SET  
(LSTM IS SUPERIOR IN CELLS HIGHLIGHTED WITH BOLD, 
GRU IS SUPERIOR IN CELLS HIGHLIGHTED WITH ITALIC) 

Models 
Accura

-cy 

F1-

micro 

F1-

macro 

Preci-

sion 
Recall 

lstm 0.7939 0.7939 0.6259 0.7810 0.7939 

gru 0.7928 0.7928 0.6309 0.7838 0.7928 

bi-lstm 0.7948 0.7948 0.6062 0.7773 0.7948 

bi-gru 0.8022 0.8022 0.6062 0.7798 0.8022 

bi-lstm-cnn 0.8042 0.8042 0.6016 0.7863 0.8042 

bi-gru-cnn 0.8046 0.8046 0.5981 0.7814 0.8046 

bi-lstm-cnn-lstm 0.7880 0.7880 0.6260 0.7826 0.7880 

bi-gru-cnn-gru 0.7978 0.7978 0.6231 0.7890 0.7978 

multi-cnn-bi-lstm 0.8040 0.8040 0.5763 0.7879 0.8040 

multi-cnn-bi-gru 0.8034 0.8034 0.6044 0.7798 0.8034 

lstm-conv-att 0.7803 0.7803 0.5343 0.7388 0.7803 

gru-conv-att 0.7494 0.7494 0.5118 0.7119 0.7494 

lstm-attention 0.7580 0.7580 0.4878 0.7110 0.7580 

gru-attention 0.7591 0.7591 0.4793 0.7124 0.7591 

TABLE V.  DIFFERENCES IN TOTAL SECONDS TAKEN TO TRAIN 

EACH MODEL (LSTM IS SUPERIOR IN CELLS HIGHLIGHTED WITH BOLD, 
WHERE THE DIFFERENCE IS NEGATIVE, GRU IS WITH ITALIC, WHERE THE 

DIFFERENCE IS POSITIVE) 

 Wikipedia Data Set Twitter Data Set 

Architecture LSTM GRU 
Differ

-ence 
LSTM GRU 

Differ

-ence 

unidirectional 890 812 78 277 242 35 

bidirectional 1703 1402 301 546 451 95 

bi-then-conv 4681 3879 802 1519 1235 284 

bi-conv-uni 5445 4474 971 1753 1444 309 

convolutional 500 507 -7 160 164 -4 

conv-attention 568 495 73 178 163 15 

attention 1154 964 190 381 320 61 

TABLE VI.  DIFFERENCES IN THE TOTAL NUMBER OF TRAINABLE 

PARAMETERS FOR EACH MODEL (GRU HAS FEWER TRAINABLE 

PARAMETERS IN ALL CASES) 

Architecture LSTM GRU Difference 

unidirectional 29440 22080 7360 

bidirectional 58880 44160 14720 

bi-then-conv 183296 137472 45824 

bi-conv-uni 232704 174528 58176 

convolutional 98816 74112 24704 

conv-attention 33024 24768 8256 

attention 70030 62670 7360 
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