

The challenges of key-value stores

Gjorgjina Cenikj

Faculty of Computer Science and
Engineering,

Ss. Cyril and Methodius University,
Skopje, Republic of North Macedonia

gjorgjina.cenikj@students.finki.ukim.mk

Dushica Jankovikj
Faculty of Computer Science and

Engineering,
Ss. Cyril and Methodius University,

Skopje, Republic of North Macedonia
dushica.jankovikj@students.finki.ukim.mk

Oliver Dimitriov
Faculty of Computer Science and

Engineering,
Ss. Cyril and Methodius University,

Skopje, Republic of North Macedonia
oliver.dimitriov@students.finki.ukim.mk

Abstract— The escalation of flexibility, scalability, and

elasticity demands for data storage solutions has implored the

quest of finding an alternative to the traditional relational

databases, which in turn, lead to the popularization of NoSQL

databases. This paper takes a deeper look into the key-value

stores, and accentuates their strengths and weaknesses. The

performance of Redis, LevelDB, and Oracle NoSQL is

compared to that of the PostgreSQL database. The results

affirm the inability of key-value stores to achieve comparable

performance on queries that are typically performed on

relational databases, such as inserting and deleting records,

sorting and querying that involves several join operations. The

results indicate that LevelDB outperforms Redis and Oracle

NoSQL in most scenarios. The evaluation of the modeling

capabilities of each database reveals additional challenges that

one needs to be aware of when choosing which key-value store

is best suited for their requirements.

Keywords— NoSQL databases, key-value, Redis, LevelDB,

Oracle

I. INTRODUCTION

Key-value stores are one example of NoSQL databases,
which u.e method based on key-value pairs, where each key
uniquely identifies the value. Both the keys and the values can
be of different data types, from simple strings, to complex
BLOBs, depending on the concrete implementation.

The main advantage of key-value databases is their high
partitioning and horizontal scaling potential. Due to the fact
that most of them do not use a predefined schema, they are
considered to be one of the most flexible NoSQL database
types, which give the application a complete control over the
stored data, with next to no restrictions. Furthermore, since no
placeholder values are assigned for the optional attributes,
they are more efficient as far as the memory needed to store
the data is concerned.

One of the major disadvantages of the typical key-value
databases is the inefficiency of querying through the values.
The standard implementations do not use a query language,
but instead merely provide options for key-value pair addition
and removal. Extending the possibilities of manipulating the
data using conventional SQL queries imparts the benefits of
speed, availability, and scalability, while keeping the familiar
relational language.

According to the CAP theorem, it is impossible for a
distributed computer system to simultaneously provide
consistency, availability and partition tolerance. While
relational databases guarantee consistency and availability,
the key-value databases guarantee availability and partitioning
tolerance, while sacrificing consistency.

Some of the most well known key-value databases are:
Dynamo, Hazelcast, LevelDB, Riak, Redis, Oracle,
Voldemort и RocksDB. In this project, we take a look at
LevelDB, Redis and Oracle NoSQL. We provide a short

overview of the capabilities of each dataset in Section 2, and
present the most related research in Section 3. A detailed
description of the databases, method and proposed models is
provided in Section 4, the discussion of the evaluation results
are presented in Section 5, while Section 6 concludes the
study.

II. BACKGROUND

A. Redis

Redis is an in-memory data structure project implementing
a distributed, in-memory key-value database. Redis supports
different kinds of abstract data structures, such as strings, lists,
maps, sets, etc. The basic functionalities it offers are put, get
and delete, i.e storing, retrieving and deleting key-value pairs.

Although Redis is an in-memory database, it can persist
data on disk. However, the disk storage format is not suitable
for querying, as its sole purpose is reconstructing the data in
memory, once the system is rebooted.

B. LevelDB

LevelDB is an embeddable, light-weight key value store
developed by Google, which offers support for many
programming languages such as C++, NodeJS and Java. This
database stores the keys and values on-disk in a sorted fashion
in the form of byte arrays. The data itself is organised by the
core storage architecture which is represented by a log-
structured merge tree (LSM). This type of write-optimised
storage system makes levelDB appropriate for large
sequential (batch) updates instead of sparse random writes.

LevelDB is not a SQL database, signifying it doesn’t have
a relational data model, nor does it support SQL queries or
indexes. The key/value store supports a simple flat mapping
from a key to a value, so the creation of data models and data
relational handling is considered only in the higher abstraction
levels.

LevelDB is published with respect to the New BSD
License which ensures that the wider technical community can
use this storage engine. This database optimises storage size
and bandwidth predominantly with the utilization of
compression algorithms such as Google’s Snappy and LZ4.
The compression showed useful for the research paper since
we were dealing with raw text such as JSON and XML. A
possible disadvantage of LevelDB is that it requires quite a
few disk seeks for information retrieval.

C. Oracle NoSQL

Oracle NoSQL is a distributed database that is typically
applied in web applications, where it is used as the primary or
as an auxiliary backend database. It supports the majority of
the most popular data types. The latest versions provide the
option of using tabular structures with an additional level of
abstraction that simplifies the modeling and querying with the
use of the familiar SQL syntax.

The concept of tables in Oracle NoSQL is to some extent
similar to that of SQL tables, in the sense that the tables are
composed of rows with predefined, named columns. Each
table must have at least one attribute that forms part of the
primary key, which uniquely identifies each table row. Some
of the methods that refer to multi row operations, allow or
even demand the use of partial primary keys, which are keys
where the values of some of the key’s attributes are not
specified.

Contrary to the SQL implementation, each table can have
nested, indexable child tables with an unlimited number of
rows. The primary key of each child table is composed of
their parent’s and their own primary keys, meaning that each
table implicitly contains the primary keys of all of their
ancestors. There are no limitations in regards to the number
of child tables present, nor the amount of nesting possible,
i.e. the depth of the hierarchy.

Alternatively, lower-level data can be represented with
the Record data type, and it is recommended to use this
approach in the case of a fixed and low number of attributes.
Indexes are an alternative way of querying tables through
values that are not necessarily part of the primary key. Using
indexes, it is possible to query rows that have different
primary keys, but share another common characteristic.

III. RELATED WORK

Redis has previously been used as a representative of the
key-value family of NoSQL databases, to compare their
functionalities to traditional relational databases [1]. While
this work has a wider scope, and takes into account all types
of non-relational databases, it is primarily concerned with
their general capabilities, without going into too much detail
about any particular type. Our work is completely focused on
the key-value databases, and the difference between their
concrete implementations.

Apart from this, Redis’ capabilities have also been
compared to Riak’s, [2] and it has been pointed out that Redis
excels in situations where the data is subjected to rapid
changes.

A study that bears more similarities to ours, [3] compares
the performance of Redis and Oracle NoSQL, and finds that
while Oracle NoSQL provides more convenient querying
methods, Redis consistently outperforms it in terms of
execution time. While this paper also investigates document
stores and extensible record stores, ours takes into account one
additional key-value database, LevelDB.

IV. METHODOLOGY

We setup an instance of each database and consider
several different data representation models, in order to be
able to fully explore the modeling capabilities offered by the
corresponding database. All of the models are based on the
same dataset, which is necessary for the comparison of their
performance on different types of queries, which is presented
in the next section.

A. Dataset

The used dataset refers to completed auctions, where each
row contains data about the seller, item, auction, shipping,
payment types, buyer protection, and bid history. The original
dataset was given in 4 XML files: ‘321gone’, ‘ebay’, ‘ubid’
and ‘yahoo’. As a preliminary step, each file was converted to
JSON format, which is better suited for reading with java

libraries. Owing to the fact that all of the fields were originally
of type string, additional preprocessing was required before
the database insertion took place.

B. Redis

For the purpose of the paper, we made a Java application
in order to import the data and run some queries on it. The
project setup is straight forward, all that is required is to add a
dependency for the Redis Client and make a connection with
the Redis-server. In order to import the data in Redis, we
transformed the given datasets from xml into key-value pairs,
where the keys have the format shown below:

$database_name:$table_name:$primary_key_value:$attri
bute_namе

The key is made of four main parts. The first two
parameters are the database and table name. After them comes
the primary key, and finally separated with colons are listed
the names of the attributes.

C. LevelDB

For the purposes of this research paper the Java
implementation of the database was utilised and tested. The
api used for this project is part of the project dain/leveldb
which offers the core functionalities: get(key), put(key,value),
and delete(key).

The entity of interest in this research paper is Listing. For
the handling of its nested structure and related attributes, three
experimental models were built:

 L_natural model - This model is the most
straightforward approach. Here, every complex
object within the nested structure of the Listing
entity is represented as a separate class. Even
though this is an intuitive approach, it might be
an overcompatmentalisation of an otherwise
rather simple entity with not that many depth
levels. The query execution for this model is
simple, since no serialisation is included in the
nested classes.

 L_flat model - This model is an example of an
oversimplification. Here only the leaf nodes of
the xml object tree are included as attributes of
the Listing model. Even though this increases the
accessibility of data for certain keys, some
structural information is lost in the process. To an
individual familiar with the structure and key
characteristics, the performance of this model
and the previous one is identical.

 L_formatted model - A model identical to the
first one when talking about object structure, but
different in the data that it carries. This model
ensures input data goes through a formatting
phase before being written in the database. This
makes the database less error prone and value
data types become a universally known fact. The
downside here is that some data types are not
primitive and might require serialization in order
to be written as a byte array value for a key - such
as lists, sets, maps.

Aside from the previously mentioned models, some
further experimentation was executed by the inclusion of
serialisation of objects of deeper levels. What this means is

that the depth of an entity is being decreased by representing
the class attributes of non primitive data types as serialised
java objects. This process gives a flatter structure, with a major
downside - time consuming value extraction which has
detrimental effects on performance.

D. Oracle NoSQL

Several models were considered for structuring the data in
the OracleNoSQL database. All of the models use the
appropriate data type for each field, which required some
additional preprocessing effort before the database imports,
since the original dataset represented all of the information as
strings.

The O_flat model is obtained by moving all of the
attributes that would represent leaves in the json tree of the
dataset into the root element, listing. This way, the table
contains only attributes of simple types, without any further
nesting. The column names were created so that they represent
the hierarchical organization of the original structure, so that
queries can be easily executed if one is familiar with this
nomenclature.

The two remaining models, named O_record and O_child,
use the Record data type to represent the seller_info,
bid_history and item_info fields. They only differ in the
representation of the auction_info field.The O_record model
relies on the use of the Record data type to represent the
auction_info field, while the O_child model represents it using
a child table, where all of the attributes are represented using
simple data types. The keys of the parent listing table are
implicitly added to the auction_info child table, as one would
add foreign keys in a relational database.

V. RESULTS

For the purposes of comparison with relational databases,
two baseline models were created using PostgreSQL. The
P_flat model is created by placing all of the data in a single
table, so that no joins are required in order to retrieve the data.
The P_nested model involves placing every JSON object in its
respective table. This way, the tables item_info, seller_info,
high_bidder, bid_history, auction_info and finally
listing_nested were created. The P_nested model has foreign
keys to every other respective table, which might be redundant
since all relations are one-to-one.

The experiments were conducted on machines with 16GB
of RAM and i7 processors, with the difference of the machine
used for the Redis experiments having 2 cores and 4 threads,
as opposed to the 4 cores and 8 threads on the machine used
for the LevelDB and Oracle NoSQL experiments. We
measured the time needed for importing the data, and executed
8 additional queries that are standard filtering (Q1-Q6) and
sorting queries (Q7,Q8) that are typically executed on
relational databases. Fig.1 features an overview of the
performance of the previously presented models and
databases, measured as the time in milliseconds needed to
import the data and execute the queries.

TABLE I. QUERY EXECUTION TIME FOR EACH PROPOSED MODEL

Query Database

 Oracle NoSQL Redis LevelDB PostgreS

QL

Import O_flat: 3001 + 269 469 L_natural: 94.66 P_flat:

O_record: 2983 +

293

O_child: 5115 +

414

L_flat: 91.29

L_formatted:

103.42

64 + 472

P_nested:

116 + 84

Q1

O_flat: 421O, 30J

O_record: 189J

O_child: 267J

48 L_natural: 29.04

L_formatted:

39.43

P_flat: 38

P_nested:

37

Q2

O_flat: 404O

O_record: 168J

O_child: 427O

49 L_natural: 28.35

L_formatted:

35.27

P_flat: 47

P_nested:

32

Q3 all models:

144O, 15J

23 L_natural: 39.3

L_formatted:

28.59

P_flat: 44

P_nested:

31

Q4 O_flat: 441O, 13I

O_record,

O_child: 22J

150 L_natural: 44.7

L_formatted:

31.23

P_flat: 31

P_nested:

25

Q5 all models: 168J

39 L_natural: 31.24

L_formatted:

25.55

P_flat: 31

P_nested:

33

Q6 O_flat: 396O, 39J

O_record: 140J

O_child: 391O, 33J

42 L_natural - 26.63

L_formatted:

26.06

P_flat: 36

P_nested:

31

Q7 O_flat: 153J, 274I

O_record: 162J

O_child: 363J, 630I

144 L_natural: 30.67

L_formatted: 20.2

P_flat: 47

P_nested:

33

Q8 O_flat: 145J, 260I

O_record: 20J

O_child: 356 J, 633I

152 L_natural: 33.88

L_formatted:

21.53

P_flat: 47

P_nested:

32

Fig. 1. Execution times in miliseconds required for the data import and 8

executed queries, for all of the proposed models and databases. The

superscripts next to the results of the Oracle models refer to the time required

when using the SQL syntax (O), java (J) or previously created indexes (I).

It comes as no surprise that the relational database
outperforms the non-relational ones, since key-value stores
are not meant to be used when accessing the data through non-
key values is required.

A. Redis

In order to get a result for a query, one needs to manipulate
the data. In our project, all manipulation and actions with the
data in Redis and LevelDB was made using Java code, since
the databases themselves provide no operations other than
basic retrieval by key, and there is no alternative way to
execute the queries.

The average execution time for the queries run on Redis is
80.87ms, the lowest one is 23ms and the highest one is 152ms.
It is interesting to point out that while LevelDB and Redis
have roughly similar execution times for the select queries,
Redis is somewhat slower when it comes to the database
creation and sorting queries.

B. LevelDB

Out of the three databases explored in this paper, LevelDB
has the best performance on most of the queries, and manages
to outperform the baseline PostgreSQL on the sorting queries
and some of the filtering queries.

As far as the different proposed models are concerned, it
can be noticed that the L_natural model that does no data

preprocessing executes the database population faster than the
L_formatted model, because no time is spent on serialization.
On account of this, the L_formatted model performs better on
the data retrieval queries, because there is no need for
formatting the data on the fly.

C. Oracle NoSQL

Oracle NoSQL does support the execution of some of the
queries, and therefore, its results are accompanied by a
superscript, which indicates the type of approach that the
specified execution time refers to.

When analyzing the time needed to import the data, one
can clearly note the significantly higher amount of time
required by the O_child model. This is due to the fact that,
unlike the other models, O_child requires the creation of an
additional table for representing the auction_info.

A slightly less obvious observation is the lack of a result
referring to the performance of the O_record model using a
secondary index. The absence is a consequence of the inability
to create indices based on the values encapsulated in a Record
field, and it is one of the main disadvantages of this model. A
related issue is the inability to query through these values,
which is the reason why queries Q1, Q2, Q4, and Q6 had to
be executed using java code.

The O_flat model supports the execution of all of the
queries using Oracle’s SQL syntax, but this model sacrifices
the original data structure.

As far as execution time is concerned, the O_child model
seems to yield the most inferior performance out of the 3
Oracle models. However, this model would be more memory
efficient in the case of missing auction_info values, since both

of the other models would store null values for all of its fields,
while the O_child would waste no memory resources. This is
also the only model that could represent a one-to-many
relationship, if needed.

While it is rather obvious that the Table API used for the
Oracle NoSQL database is slower than the other two
databases, it is worth noting that the syntax the API provides
is significantly more compact and convinient to anyone
familiar with SQL.

VI. CONCLUSIONS

Through the review of Redis, LevelDB and Oracle NoSQL
as representatives of the key-value databases, this work once
again reaffirms the strengths, and especially the weaknesses
of this type of non-relational databases. The obtained results
indicate that the Table API used for the Oracle NoSQL
database is slower than the Redis and LevelDB
implementations. While relational databases outperformed on
the dataset used in our study, the empirical results have
noteworthy implications for future research that could involve
the use of a different and larger dataset, analyzing additional
queries and experimenting with different data models.

REFERENCES

[1] M. Radoev, "A Comparison between Characteristics of NoSQL
Databases and Traditional Databases," Computer Science and

Information Technology 5.5, 2017, pp.149 - 153.

[2] C.A. Baron, “NoSQL Key-Value DBs Riak and Redis”, Database

Systems Journal, 6, issue 4, 2015, pp. 3-10.

[3] F. Bugiotti and L. Cabibbo, “A comparison of data models and APIs of
NoSQL datastores,” 21st Italian Symposium on Advanced Database

Systems, 2013, pp. 63-74.

	I. Introduction
	II. Background
	A. Redis
	B. LevelDB
	C. Oracle NoSQL

	III. Related work
	IV. Methodology
	A. Dataset
	B. Redis
	C. LevelDB
	D. Oracle NoSQL

	V. Results
	A. Redis
	B. LevelDB
	C. Oracle NoSQL

	VI. Conclusions
	References

