
Recent Advances in SQL Query Generation: A
Survey

Jovan Kalajdjieski
Faculty of Computer Science

and Engineering
Ss. Cyril and Methodius University

Skopje, North Macedonia
jovan.kalajdzhieski@finki.ukim.mk

Martina Toshevska
Faculty of Computer Science

and Engineering
Ss. Cyril and Methodius University

Skopje, North Macedonia
martina.toshevska@finki.ukim.mk

Frosina Stojanovska
Faculty of Computer Science

and Engineering
Ss. Cyril and Methodius University

Skopje, North Macedonia
frosina.stojanovska@finki.ukim.mk

Abstract—Natural language is hypothetically the best user
interface for many domains. However, general models that
provide an interface between natural language and any other
domain still do not exist. Providing natural language interface
to relational databases could possibly attract a vast majority of
users that are or are not proficient with query languages. With
the rise of deep learning techniques, there is extensive ongoing
research in designing a suitable natural language interface to
relational databases.

This survey aims to overview some of the latest methods and
models proposed in the area of SQL query generation from natu-
ral language. We describe models with various architectures such
as convolutional neural networks, recurrent neural networks,
pointer networks, reinforcement learning, etc. Several datasets
intended to address the problem of SQL query generation are
interpreted and briefly overviewed. In the end, evaluation metrics
utilized in the field are presented mainly as a combination of
execution accuracy and logical form accuracy.

Keywords—SQL Query Generation, Text-to-SQL, Deep Learn-
ing, Semantic Parsing

I. INTRODUCTION

The possibility to use a natural language statement to query
a database has the potential to attract a vast majority of users
that are not proficient in using query languages such as the
Structured Query Language (SQL). This language is the main
query language for relational databases currently in use. The
problem of text to SQL mapping could be viewed as a Se-
mantic Parsing problem [1], which is defined as transforming
a natural language input into a machine-interpretable represen-
tation. Semantic parsing is a long-standing question and is a
well-studied problem in Natural Language Processing (NLP).
As such, it has attracted much attention both from academia
and from the industry, especially translating natural language
into SQL queries. A large amount of the data in today’s
age is stored in relational databases for applications ranging
from financial and e-commerce domains to medical domains.
Therefore, it comes as no surprise that querying a database
using natural language has many different applications. It also
opens up the prospects of having self-serving dashboards and
dynamic analytics, where people not accustomed to the SQL
language could use it to get the most relevant information for
their business. The task of translating natural language to SQL
has many related tasks such as code generation and schema
generation. All these tasks could be ultimately combined

to form a general task of translating natural language to a
complete application.

There have been a variety of methods proposed to tackle
the semantic parsing problem such as: rule-based [2], unsu-
pervised [3], supervised [4], response based [5] and many
others. However, the problem of generating SQL is more
challenging than the traditional semantic parsing problem. A
short natural language question could require joining multiple
tables or having multiple filtering conditions. This requires
more context based approaches.

For that purpose, in recent years, with the extensive devel-
opment of deep learning techniques, especially convolutional
and recurrent neural networks, the results are drastically im-
proving. There have been quite a few researches attempting
to generate data processing results by directly linking records
in the tables to the semantic meaning of the natural language
input, such as [6] and [7]. However, these attempts are not
scalable to big tables and are not reusable when the database
schema is changed. More recent approaches use only the
natural language input and the database schema and metadata
to generate the queries. We review the most recent approaches
in our research. Furthermore, the release of large annotated
datasets containing questions and the corresponding database
queries has additionally enhanced the ability to use deep
learning or supervised techniques to tackle this problem. This
has enabled the problem to evolve into a more complex task
where the approaches should be domain independent and
involving multiple tables with complex queries.

In this paper, we provide an extensive research on the most
used datasets, as well as the most recent approaches applied
on these datasets to handle the problem of generating SQL
queries from natural language input. The main motivation
of this paper is to provide a comprehensive explanation and
analysis of the most recent methods to handle the task of
generating SQL using natural language as well as the different
datasets and evaluation techniques used. The rest of the paper
is organized as follows. Section II describes the different
datasets that have been used in the approaches described.
A comprehensive explanation of the different methods for
generating SQL queries from text is presented in Section III.
The different evaluation methods used for this problem are
outlined in Section IV. Finally, Section V concludes the paper.

II. TEXT-TO-SQL DATASETS

The datasets designed for semantic parsing of natural lan-
guage sentences to SQL queries are composed of annotated
complex questions and SQL queries. The sentences are ques-
tions for a specific domain, and the answers for these questions
are derived from existing databases. Therefore, the particular
question is connected with an SQL query. The execution of the
SQL query extracts the answer from the existing database/s.

Nowadays, there are several semantic parsing datasets de-
veloped for SQL query mapping. All of the different datasets
vary in several aspects. Table I provides detailed statistics of
the most used datasets among researchers. The early devel-
oped datasets concentrate on one domain and one database:
ATIS [8], GeoQuery [9], Restaurants [8], [10], Academic [11],
Scholar [12], Yelp [13], IMDB [13] and Advising1 [14].

The newest datasets, WikiSQL2 [15] and Spider3 [16], are
cross-domain context-independent with a larger size. Also,
newer datasets have a greater number of questions and more
comprehensive queries. The size of the datasets is crucial
for the proper model evaluation. Unseen complex queries in
the test sets can evaluate the model generalization ability.
Authors in [14] show that the generalisability of the systems is
overstated by the traditional data splits. The WikiSQL dataset
contains a large number of questions and SQL queries, yet
these SQL queries are simple and concentrated on single
tables [16]. The Spider dataset contains a more modest number
of questions and SQL queries than WikiSQL. However, these
questions are more complex, and the SQL queries include
different SQL clauses such as join of tables and nested
query [16].

The SParC [17] and CoSQL [18] are the extension of the
Spider dataset that are created for contextual cross-domain
semantical parsing and conversational dialog text-to-SQL sys-
tem. These new aspects open new and significant challenges
for future research in this domain.

III. METHODS

With the rise of deep learning techniques, there is extensive
ongoing research in designing a suitable natural language
interface to relational databases. Mostly, the models in this
area rely upon the encoder-decoder framework that is widely
used in the field of natural language processing. The following
subsections present some of the models utilized in the field.
Some of the models described in this paper are publicly
available which enables other researchers to evaluate or build
other models upon them.

A. SQLNet
The order of two constraints in the WHERE clause of an

SQL query does not matter, but syntactically, two queries with
a different order of constraints are considered as different
queries. This can affect the performance of a sequence-to-
sequence model. That is what SQLNet4 [20] attempts to

1https://github.com/jkkummerfeld/text2sql-data, last visited: 05.05.2020
2https://github.com/salesforce/WikiSQL, last visited: 05.05.2020
3https://github.com/taoyds/spider, last visited: 05.05.2020
4https://github.com/xiaojunxu/SQLNet, last visited: 05.05.2020

overcome. SQLNet is a novel approach for generating SQL
queries from a natural language using a sketch based approach
on the WikiSQL task. The sketch is generically designed to
express all the SQL queries of interest. The sketch separates
the query into two different token types: keywords and slots
to be filled. The slots belong to either the SELECT clause or
to the WHERE clause.

The WHERE clause is the most complex structure to predict
and consists of three types of slots: column, op and value.
All of these types can appear multiple times, as in real
queries where we can have multiple filter conditions. When
predicting the WHERE clause, the authors firstly need to
predict which columns to include in the conditions. For that
purpose, they generate the probability of a column name col
appearing in the natural language query Q which is computed
as Pwherecol(col|Q) = σ(uTc Ecol + uTq EQ|col) where σ is the
sigmoid function, Ecol and EQ|col are the embeddings of the
column name and the natural language question respectively,
and uc and uq are two column vectors of trainable variables.

The embeddings Ecol and EQ|col are computed as hidden
states of a bidirectional LSTM (Long-short term memory
introduced in [21]) which do not share their weights which
enables the decision whether to include a particular column to
be independent of other columns. EQ|col has an additional
column attention mechanism to be able to remember the
particular information useful in predicting a particular column
name. After Pwherecol(col|Q) is computed, the next step is
predicting which columns need to be included in the WHERE
clause. To be more precise, the authors use a network to
predict the number of column slots K by translating it into a
N + 1 classification problem where N is an upper bound of
the number of columns to choose.

After selecting the top-K columns in the where clause, a
prediction is done to predict one of the three possible operands
{=, >, <}. This prediction again uses the column attention
embedding EQ|col, which clearly shows the logical connection
between the operand and the particular column upon which
the operand will be used. For every column, the method also
needs to predict the value slot. Unlike the column slots, the
order of the tokens matters in the value slot, so a sequence-
to-sequence structure is used to predict a substring from the
natural language question. The encoder phase still employs a
bidirectional LSTM, while the decoder phase computes the
distribution of the next token using a pointer network [22],
[23] with the column attention mechanism.

On the other side, the SELECT clause consists of two types
of slots: an aggregator and a column name. Another difference
is that there is only one column name in the SELECT clause,
unlike multiple column name slots in the WHERE clause.
However, the prediction is the same as the one done in the
WHERE clause, keeping in mind that the model is only
trying to predict one column. After predicting the column, the
probability of an aggregator is also predicted, which shares a
similar structure as the prediction done for the operation slot
in the WHERE clause, since there are five possible aggregators
to choose from.

TABLE I
TEXT-TO-SQL DATASETS

Dataset Year Domain(s) Databases Tables Questions Queries
ATIS [8] 1994 air travel information 1 32 5,280 947
GeoQuery [9] 2001 US geography 1 8 877 247
Restaurants [10], [19] 2003 restaurants, food types, locations 1 3 378 378
Academic [11] 2014 Microsoft Academic Search (MAS) 1 15 196 185
Scholar [12] 2017 academic publications 1 7 817 193
Yelp [13] 2017 Yelp website 1 7 128 110
IMDB [13] 2017 Internet Movie Database 1 16 131 89
WikiSQL [15] 2017 / 26,521 24,241 80,654 77,840
Advising [14] 2018 student course information 1 10 4,570 211
Spider [16] 2018 138 different domains 200 645 10,181 5,693

B. Bidirectional Attention
The Bidirectional Attention model5 [24], much like SQLNet

employs the sketch based approach for generating an SQL
query. The model consists of four separate modules: character-
level and word-level embedding module, the COLUMN-
SELECT module, the AGGREGATOR-SELECT module and
the WHERE module.

The character embeddings in the first module are initialized
using the pre-trained character-level GloVe model with 300
dimensions and then leverage convolutional neural networks
with three kernels to get the next representation of the em-
bedding. The word embeddings are initialized using the pre-
trained word-level GloVe model with size 300. The words not
present in the GloVe model are initialized to 0 and not to a
random value because the authors have inferred that using
a random value and making it trainable makes the results
decrease. Because a column may contain several words, the
words of one column are encoded after applying an LSTM
network.

In the COLUMN-select module, each token of the questions
and the column names is represented as a one-hot vector, and
then is an input to a bidirectional LSTM. Using this approach,
the attention information of questions and column names is
captured and then used to make a prediction over the column
names.

On the other hand, the authors infer that there are five
types of aggregation keywords in SQL: MAX, MIN, COUNT,
SUM, AVG. They also conclude that the column name does not
impact the prediction result, so the AGGREGATION-SELECT
module only needs to predict the type of aggregation using the
question as input. This would translate the problem to a text
classification problem, where the input text is the encoded
question.

The last and most challenging part is the WHERE module.
Because the order of conditions does not matter, this model
employs a very similar approach like SQLNet. Firstly, the
number of conditions K is predicted. The prediction once
again can be viewed as a (N+1) classification problem. After
the number of columns is predicted, taking questions and
column names as input and leveraging the bi-attention infor-
mation from the inputs, it predicts the column slots, which is
the same computation like in the COLUMN-SELECT module

5https://github.com/guotong1988/NL2SQL, last visited: 05.05.2020

with the only difference that in this part the top-K columns are
selected for the column slots. For each column slot predicted,
the model then needs to select the operator from the set of
three possible operators. Again, it uses the bi-attention info
from the question and the column names, but now with the
addition of the prediction for the column slot. The last part is
the value part where leveraging the predicted columns info, a
sequence-to-sequence structure is used to generate the values
by taking the predicted columns info as input.

C. Encoder-Decoder Framework
The grammatical structure of a language can be described

using Backus Normal Form (BNF), which is a set of derivation
rules, consisting of a group of symbols and expressions.
The BNF specification consists of two types of symbols:
terminal and non-terminal symbols. Non-terminal symbols can
be substituted by a sequence of expressions. There can be
more than one sequence for a non terminal symbol, divided
by a vertical bar meaning that one of them needs to be
selected. On the other side, as the name suggests, the terminal
symbols are not substituted. The terminal symbols are usually
SQL keywords, operators or a concrete value expression. The
encoder-decoder framework [25] leverages the BNF for the
purpose of translating natural language inputs to SQL queries.
As the name states, it consists of two phases: encoder phase
and decoder phase.

This approach firstly starts with the encoder phase with
an objective of digesting the natural language input and
putting the most important information in the memory before
proceeding to the next phase. For this purpose, the authors
propose extracting additional semantic features that link the
original words to the semantics of the SQL language. The
semantic features are in fact group of labels, where each label
corresponds to a terminal symbol in the BNF. In the BNF
of SQL-926 there are four terminal symbols: derived col-
umn, table reference, value expression and string expression.
The authors manually label a small group of samples with
these four label types and employ conditional random fields
(CRFs) [26] to build effective classifiers for these labels.

The decoder phase employs two different techniques: in-
cluding the embedding of grammar state in the hidden layer
and the masking of word outputs. The first technique is used
for state transition. The authors state that given a particular

6https://en.wikipedia.org/wiki/SQL-92, last visited: 05.05.2020

word in the output sequence, the grammar state of the word
is the last expression of BNF this word fits in. To facilitate
grammar state tracking, a binary vector structure is used
to represent all possible states. The length of the vector is
identical to the number of expressions in the BNF.

The second technique is used to filter out invalid words
for outputting, based on short term and long term rule depen-
dencies. At each step, the decoder chooses one rule from the
candidate short-term dependencies, and one or more rules from
the candidate long-term dependencies. These rules are used for
rule matching, and once the decoder identifies a matching rule
it generates a mask on the dictionary to block the output of
words not allowed by the rule. The short-term dependency is
updated according to the current grammar state as well as the
last output word from the decoder. Long-term dependencies
on the other hand, are updated based on the active symbols
chosen by the SQL parser, maintained in the grammar state
vector.

D. Seq2SQL
Seq2SQL7 [15] method consists of two parts: augmented

pointer generator network and main Seq2SQL model. The
augmented pointer network generates the content of the SQL
query token-by-token by copying from the input sequence. The
input sequence x is composed of the following tokens: words
in the question, column names in the database tables and SQL
clauses. The network encodes x with two-layer bidirectional
LSTM network using the embeddings of its words. Next, a
pointer network [22] is applied. The decoder is a two-layer
unidirectional LSTM that generates one token at each timestep
using the token generated in the previous step. It produces
scalar attention score for each position of the input sequence.
The token with the highest score is selected as next token.
The second part, Seq2SQL, is composed of three different
parts: Aggregation Operation, SELECT Column and WHERE
Clause.

The first part, Aggregation Operation, classifies aggregation
operation of the query, if any. First, scalar attention score is
computed for each token in the input sequence. The vector of
scores is then normalized in order to produce a distribution
over the input tokens. It is computed with a Multilayer
Perceptron (MLP) with cross-entropy loss. The second part,
SELECT Column, points to a column in the input table.
Each column name is first encoded with LSTM network
such that the last encoded state of the LSTM is assumed
to be representation of the specific column. With the same
architecture, representation for the input question is calculated.
MLP with cross-entropy loss is applied to compute score for
each column conditioned on the input representation. The last
part, WHERE Clause, generates the conditions for the query.
For this part, reinforcement learning is applied to optimize
the expected correctness of the execution result. Next token
is sampled from the output distribution. When the complete
query is generated, it is executed against the database. The
reward is: (1) -2 if the generated query is not a valid SQL

7https://github.com/salesforce/WikiSQL, last visited: 05.05.2020

query, (2) -1 if the generated query is a valid SQL query but
executes to an incorrect result, and (3) +1 if the generated
query is a valid SQL query and executes to the correct
result. The loss is the negative expected reward over possible
WHERE clauses.

The overall model is trained using gradient descent to
minimize the objective function that is the combination of
the objective functions of its composing parts. However,
this method does not incorporate complex SQL queries such
joining tables and nested queries.

E. STAMP
Syntax- and Table-Aware seMantic Parser (STAMP) [27]

is a model based on Pointer Networks [22]. It is composed
of two separate bidirectional Gated Recurrent Unit (GRU)
networks as encoder and decoder. An additional bidirectional
RNN is used to encode the column names. The STAMP model
is composed of three different channels, that are attentional
neural networks: (1) SQL channel - predict SQL clause, (2)
Column channel - predict column name and (3) Value channel
- predict table cell. For SQL and Value channel, the input
is the decoder hidden state and representation of the SQL
clause. Column channel has an additional input that is the
representation of the question. Feed-forward neural network
is used as a switching gate for the channels.

Column-cell relation is incorporated into the model in order
to improve the prediction of SELECT column and WHERE
value. The representation of the column name is enhanced with
cell information. The importance of a cell is measured with
the number of cell words occurring in the question and then
the final importance of the cell is normalized with softmax
function. The vector representing the column is concatenated
with weighted average of the cell vectors that belong to
that column. An additional global variable to memorize the
last predicted column name is added. When the switching
gate selects the Value channel, the cell distribution is only
calculated over the cells belonging to the last predicted column
name.

The model is trained in different ways: with standard cross-
entropy loss over the pairs of question and SQL query, and
with reinforcement learning with policy gradient as in [15].

F. One-Shot Learning for Text-to-SQL Generation
A method for SQL query generation composed of tem-

plate classification and slot filling is presented in [28]. The
first phase, template classification consists of two networks:
Candidate Search Network and Matching Network. The first
network, Candidate Search Network, chooses n most relevant
templates. The network is a convolutional neural network and
is trained to classify a natural language question where the
classes represent SQL templates. For a given question, features
from the layer before the final classification layer are extracted.
Then, n most similar vectors with the question vector are
obtained using cosine similarity. The second network, Match-
ing Network, predicts the SQL template. First, an encoder
is used to embed the question. The encoder is convolutional
neural network consisted of convolutional layers with different

window sizes with max-pooling. The final representation of
the question is a concatenation of each pooled feature. An
attention-based classifier predicts the template label based
on the feature vectors obtained with the Candidate Search
Network.

The second phase, slot filling, is a Pointer Network [22]
that fills the slots of the predicted SQL template. The encoder
is bidirectional LSTM network, while the decoder is unidi-
rectional LSTM network. The network determines the tokens
by maximizing the log-likelihood of the predicted token for
the given natural language question and list of variables in
the SQL template. The decoder generates one token at each
timestep using attention over its previous hidden state and the
encoder states.

G. Relation-Aware Self-Attention for Text-to-SQL Parsers
This approach explained in [29]8 is an improvement on the

already existing methods so that it overcomes some crucial
limitations such as: working in only one domain, working
with one database schema, working with only one table or
overlapping training and test sets. The main improvement of
this approach focuses on the encoder part of the encoder-
decoder framework already seen in previous approaches. To
incorporate the relationships between schema elements in the
encoder, the database schema is translated to a directed graph
where each node represents either a table or a column and
the edge represents the relationship between the elements.
The label in the node represents the name of the table or
column appropriately. The columns additionally have their
type prepended. All the edges between the nodes are labeled
as well to represent the exact relationship they represent. The
relationships can be: (1) Column X Column Y relationship
where X and Y belong to the same table or X is a foreign
key for Y (or vice versa), (2) Column X Table T relationship
(or vice versa) where X is the primary key of T or X is a
column of T (but not a primary key), and (3) Table T Table R
relationship where T has a foreign key column in R (or vice
versa) or T and R have foreign keys in both directions.

After obtaining the initial graph representation, bidirectional
LSTM is applied to the labels in the nodes and the output of
the initial and final timesteps of the LSTM is concatenated
to obtain the embedding for the node. For the input question,
bidirectional LSTM is also used. Until this point, these initial
representations are independent of one another in the sense
that they do not have any information which other columns
or tables are present. For that purpose, a relation-aware self-
attention transformation is applied to all the elements to
encode the relationship between two elements. For brevity,
we omit the mathematical model used to represent the rela-
tionships.

The formulation of the relation-aware self-attention is the
same as the one used in Shaw et al. [30]. However, in this
approach, it is shown that relation-aware self-attention can
effectively encode more complex relationships that exist within
an unordered sets of elements compared with relationships

8https://github.com/rshin/seq2struct, last visited: 05.05.2020

between two words. After applying this transformation, the
final encoding of the columns, tables and the input question is
used in the decoder. The decoder used is the same as in [31].
The decoder generates the query using a depth-first traversal
order in an abstract syntax tree. It outputs a sequence of
production rules that expand the last generated node in the
tree. The decoder does not output the FROM clause. It is
recovered afterwards using hand-written rules where only the
columns referred to in the remainder of the query are used.
Small modifications have been made to this decoder, namely:
(1) when the decoder needs to output a column a pointer
network based on scaled dot-product attention is used, and (2)
at each step, the decoder accesses the encoder outputs using
multi-head attention.

IV. EVALUATION
There is no single metric for evaluation of the text-to-SQL

model. One strategy is to estimate the correctness of the result
for the question. This metric is called execution accuracy [15].
It compares the result from the generated SQL query and the
result from the ground truth query. Then it returns the number
of correct matches divided by the total number of examples in
the dataset. One shortcoming of this approach is that it does
not eliminate the cases when a completely different query is
giving the same result as the expected, for example, the NULL
result.

The second metric is the logical form accuracy [15]. This
approach calculates the exact matches of the synthesized query
and the ground truth query. The queries are represented as
strings, and the method for comparison is the exact string
match of the queries. The weakness of this approach is the
penalization of the queries that are correct but do not achieve
a complete string match with the ground truth query; for
example, different order of the returning columns or different
queries for the same purpose. To partially address this issue,
the authors in [20] introduce the query match accuracy.
The predicted and ground truth queries are represented in a
canonical form to perform the matching of the queries. This
approach only solves the false negatives due to the ordering
issue. SQL canonicalization is an approach used to eliminate
the problem of the different writing style by ordering the
columns and tables and using standardized aliases [14].

The evaluation metric in [16] includes component and
exact matching of the queries. Each query is divided into
components: SELECT, WHERE, GROUP BY, ORDER BY
and KEYWORDS. The predicted and ground truth queries are
divided and represented as subsets for each of the components,
and these subsets are then compared with exact matching.
However, the problem of the novel synthesized syntax for
the identical logic of the SQL query is not eliminated, so the
execution accuracy is needed for a comprehensive evaluation.
The approach in [16] also incorporates one novelty in the
evaluation process, the difficulty of the SQL query. Dividing
the results by the hardness criteria can be more informative of
the general ability of the model.

None of the current metrics can be used as a standalone
evaluation metric for exact evaluation and comparison of the

models, so the combination of the existing metrics is essential.
It is critical for the future work in this domain to incorporate
the evaluation question.

V. CONCLUSION
The translation of a natural language to SQL queries is a

problem of semantic parsing. There are several text-to-SQL
datasets developed that include natural language questions that
can be answered by executing an SQL query from a database.
The progression of the datasets introduces a combination of
different domains with multiple databases and tables. The
increase in the size of the datasets is apparent. Also, the
questions are becoming more complex and in more extensive
number.

The progressions in the NLP area are reflected in the
designed models of this problem. The encoder-decoder frame-
work is incorporated to translate the natural language into
an SQL query. The encoder serves for natural language pro-
cessing, whereas the decoder predicts the BNF representation
of the SQL output. The sketch-based approach is introduced
for SQL representation for eliminating the ordering effect of
sequence generation. Additional efforts incorporate attention
to the bidirectional LSTM network with the sketch-based
method. The augmented pointer network is also combined in
the novel models. The Relation-Aware Self-Attention approach
is an improvement on already existing methods to overcome
several limitations. It includes a relationship graph of the
database schema and self attention to encode more complex
relationships.

To evaluate the models, several approaches combine the
execution accuracy and logical form accuracy. The latest
approaches divide the accuracy metric into component and
exact matching with the additional information of the difficulty
of the SQL query.

REFERENCES

[1] J. Andreas, A. Vlachos, and S. Clark, “Semantic parsing as mach.
transl.,” in Proc. of the 51st Annu. Meeting of the Assoc. for Comput.
Linguistics (Vol. 2: Short Papers), pp. 47–52, 2013.

[2] A.-M. Popescu, O. Etzioni, and H. Kautz, “Towards a theory of natural
lang. interfaces to databases,” in Proc. of the 8th Int. Conf. on Intell.
User Interfaces, pp. 149–157, 2003.

[3] D. Goldwasser, R. Reichart, J. Clarke, and D. Roth, “Confidence driven
unsupervised semantic parsing,” in Proc. of the 49th Annu. Meeting of
the Assoc. for Comput. Linguistics: Human Lang. Technol., pp. 1486–
1495, 2011.

[4] J. M. Zelle, Using inductive logic program. to automate the construction
of natural lang. parsers. PhD thesis, 1995.

[5] P. Liang, M. I. Jordan, and D. Klein, “Learning dependency-based
compositional semantics,” in Proc. of the 49th Annu. Meeting of the
Assoc. for Comput. Linguistics: Human Lang. Technol.-Vol. 1, pp. 590–
599, Assoc. for Comput. Linguistics, 2011.

[6] A. Neelakantan, Q. V. Le, M. Abadi, A. McCallum, and D. Amodei,
“Learning a natural lang. interface with neural programmer,” ICLR,
2017.

[7] P. Yin, Z. Lu, H. Li, and B. Kao, “Neural enquirer: learning to query
tables in natural lang.,” in Proc. of the 25th Int. Joint Conf. on Artif.
Intell., pp. 2308–2314, 2016.

[8] D. A. Dahl, M. Bates, M. Brown, W. Fisher, K. Hunicke-Smith,
D. Pallett, C. Pao, A. Rudnicky, and E. Shriberg, “Expanding the scope
of the atis task: The atis-3 corpus,” in Proc. of the workshop on Human
Lang. Technol., pp. 43–48, Assoc. for Comput. Linguistics, 1994.

[9] L. R. Tang and R. J. Mooney, “Using multiple clause constructors in
inductive logic program. for semantic parsing,” in Eur. Conf. on Mach.
Learn., pp. 466–477, Springer, 2001.

[10] L. R. Tang and R. J. Mooney, “Automated construction of database
interfaces: Intergrating statistical and relational learning for semantic
parsing,” in 2000 Joint SIGDAT Conf. on Empirical Methods in Natural
Lang. Process. and Very Large Corpora, pp. 133–141, 2000.

[11] F. Li and H. V. Jagadish, “Constructing an interactive natural lang.
interface for relational databases,” Proc. of the VLDB Endowment, vol. 8,
pp. 73–84, September 2014.

[12] A. C. J. K. Srinivasan Iyer, Ioannis Konstas and L. Zettlemoyer,
“Learning a neural semantic parser from user feedback,” in Proc. of
the 55th Annu. Meeting of the Assoc. for Comput. Linguistics (Vol. 1:
Long Papers), pp. 963–973, 2017.

[13] I. D. Navid Yaghmazadeh, Yuepeng Wang and T. Dillig, “Sqlizer: Query
synthesis from natural lang.,” in Int. Conf. on Object-Oriented Program.,
Syst., Languages, and Appl., ACM, pp. 63:1–63:26, October 2017.

[14] L. Z. K. R. S. S. R. Z. Catherine Finegan-Dollak, Jonathan K. Kummer-
feld and D. Radev, “Improving text-to-sql eval. methodology,” in Proc.
of the 56th Annu. Meeting of the Assoc. for Comput. Linguistics (Vol.
1: Long Papers), pp. 351–360, July 2018.

[15] V. Zhong, C. Xiong, and R. Socher, “Seq2sql: Generating struct.
queries from natural lang. using reinforcement learning,” CoRR,
vol. abs/1709.00103, 2017.

[16] T. Yu, R. Zhang, K. Yang, M. Yasunaga, D. Wang, Z. Li, J. Ma, I. Li,
Q. Yao, S. Roman, et al., “Spider: A large-scale human-labeled dataset
for complex and cross-domain semantic parsing and text-to-sql task,” in
Proc. of the 2018 Conf. on Empirical Methods in Natural Lang. Process.,
pp. 3911–3921, 2018.

[17] T. Yu, R. Zhang, M. Yasunaga, Y. C. Tan, X. V. Lin, S. Li, H. Er,
I. Li, B. Pang, T. Chen, et al., “Sparc: Cross-domain semantic parsing
in context,” in Proc. of the 57th Annu. Meeting of the Assoc. for Comput.
Linguistics, pp. 4511–4523, 2019.

[18] T. Yu, R. Zhang, H. Er, S. Li, E. Xue, B. Pang, X. V. Lin, Y. C.
Tan, T. Shi, Z. Li, et al., “Cosql: A conversational text-to-sql challenge
towards cross-domain natural language interfaces to databases,” in Proc.
of the 2019 Conf. on Empirical Methods in Natural Lang. Process. and
the 9th Int. Joint Conf. on Natural Lang. Process., pp. 1962–1979, 2019.

[19] O. E. Ana-Maria Popescu and H. Kautz, “Towards a theory of natural
lang. interfaces to databases,” in Proc. of the 8th Int. Conf. on Intell.
User Interfaces, pp. 149–157, 2003.

[20] X. Xu, C. Liu, and D. Song, “Sqlnet: Generating structured
queries from natural lang. without reinforcement learning,” CoRR,
vol. abs/1711.04436, 2017.

[21] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[22] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Advances
in Neural Inf. Process. Syst., pp. 2692–2700, 2015.

[23] Z. Yang, P. Blunsom, C. Dyer, and W. Ling, “Reference-aware lang.
models,” in Proc. of the 2017 Conf. on Empirical Methods in Natural
Lang. Process., pp. 1850–1859, 2017.

[24] G. Huilin, G. Tong, W. Fan, and M. Chao, “Bidirectional attention for
sql gener.,” in 2019 IEEE 4th Int. Conf. on Cloud Comput. and Big Data
Anal. (ICCCBDA), pp. 676–682, IEEE, 2019.

[25] R. Cai, B. Xu, Z. Zhang, X. Yang, Z. Li, and Z. Liang, “An encoder-
decoder framework translating natural lang. to database queries,” in
Proc. of the 27th Int. Joint Conf. on Artif. Intell., pp. 3977–3983, 2018.

[26] J. D. Lafferty, A. McCallum, and F. C. Pereira, “Conditional random
fields: Probabilistic models for segmenting and labeling sequence data,”
in Proc. of the Eighteenth Int. Conf. on Mach. Learn., pp. 282–289,
Morgan Kaufmann Publishers Inc., 2001.

[27] Y. Sun, D. Tang, N. Duan, J. Ji, G. Cao, X. Feng, B. Qin, T. Liu, and
M. Zhou, “Semantic parsing with syntax-and table-aware sql gener.,” in
Proc. of the 56th Annu. Meeting of the Assoc. for Comput. Linguistics
(Vol. 1: Long Papers), pp. 361–372, 2018.

[28] D. Lee, J. Yoon, J. Song, S. Lee, and S. Yoon, “One-shot learning for
text-to-sql gener.,” CoRR, 2019.

[29] R. Shin, “Encoding database schemas with relation-aware self-attention
for text-to-sql parsers,” CoRR, vol. abs/1906.11790, 2019.

[30] P. Shaw, J. Uszkoreit, and A. Vaswani, “Self-attention with relative
position representations,” in Proc. of the 2018 Conf. of the North Amer.
Chapter of the Assoc. for Comput. Linguistics: Human Lang. Technol.,
Vol. 2 (Short Papers), pp. 464–468, 2018.

[31] P. Yin and G. Neubig, “A syntactic neural model for general-purpose
code gener.,” in Proc. of the 55th Annu. Meeting of the Assoc. for
Comput. Linguistics (Vol. 1: Long Papers), pp. 440–450, 2017.

