

A Generalization of the Convolutional Codes

Dejan Spasov
Faculty of Computer Science and Engineering

Sts. Cyrill and Methodius University
Skopje, North Macedonia

Abstract—In this paper we propose a generalization of the
convolutional codes. The proposed generalization of the
convolutional codes offers the possibility to discover previously
unknow convolutional codes. For example, convolutional codes
with pseudo-random time-varying trellis diagram that may
improve error-correcting capabilities of the convolutional
codes. An important property of the proposed generalization of
the convolutional codes is that the decoding complexity remains
the same as the decoding complexity of the ordinary
convolutional codes. We propose encoding and decoding
schemes for the generalized convolutional codes.

Keywords—error-correcting codes, convolutional codes, turbo
codes, LTE, 5G

I. INTRODUCTION
Channel coding plays an important part in modern

communication systems. In [1], Shannon gave probabilistic
proof that we can communicate with an arbitrary small
probability of error as long as the communication rate is below
the channel capacity. Error-correcting codes provide
constructive solution to the Shannon’s theorem. Many error-
correcting codes were developed to provide low-power and
reliable communication over unreliable channels.

Let 𝐹 be a finite alphabet of |𝐹| letters and let 𝐹# be the
set of all strings of length 𝑛 over 𝐹 . In general, an error-
correcting code 𝐶 is a subset of 𝐹# of 𝑀 elements. Elements
of the code 𝑐(∈ 𝐶 are called codewords.

Let 𝑑(𝑥, 𝑦) denote the Hamming distance between two
strings 𝑥, 𝑦 ∈ 𝐹# . The Hamming distance 𝑑(𝑥, 𝑦) is the
number of positions in which 𝑥 and 𝑦 differ. Let 𝑑 denote the
minimum distance 𝑑 of the code 𝐶 defined as

𝑑 = min4𝑑5𝑐(, 𝑐678𝑐(, 𝑐6 ∈ 𝐶, 𝑖 ≠ 𝑗< (1)

If the minimum distance 𝑑 is known, we say that 𝐶 is an
(𝑛,𝑀, 𝑑) code. The larger the minimum distance 𝑑 of a code
𝐶 is, the better the error-correcting capability the code 𝐶 is.

The code 𝐶 is linear if its codewords form 𝑘- dimensional
linear subspace in 𝐹#. We will write [𝑛, 𝑘, 𝑑] to denote that
the code is linear. For linear codes there exist 𝑘 basis
vectors that are kept as rows in a generator matrix 𝐺. For each
linear code 𝐶 there is a generator matrix 𝐺 of type 𝐺 = [𝐼	𝐴] ,
where 𝐼 is the identity matrix. We may say that the generator
matrix 𝐺 = [𝐼	𝐴] is in standard form. It is well-known that
for linear codes there exist additional matrix, known as the
parity check matrix 𝐻, defined as

𝐻𝑐(E = 0, ∀𝑐(∈ 𝐶	 (2)

Let 𝐺 = [𝐼	𝐴] be the generator matrix of a code 𝐶, then
𝐻 = [−𝐴E	𝐼]is the parity check matrix of the code 𝐶.

A k-letter message may be encoded in a n-letter codeword
𝑐. The codeword 𝑐 may be sent over a noisy channel. The
noisy channel may alter few bits of the codeword. A receiver
may receive a n-bit string 𝑥 obtained from the codeword 𝑐 in
which some bits have been altered. The process of finding the
nearest, in terms of Hamming distance 𝑑(𝑥, 𝑦), codeword 𝑐̂ ∈
𝐶	 to the string 𝑥, is known as decoding

𝑐̂ = argmin4𝑑5𝑥, 𝑐678𝑐6 ∈ 𝐶< (3)

Some codes have efficient (polynomial) procedure to find
the nearest codeword 𝑐̂ ∈ 𝐶 (in terms of Hamming distance)
to the received string 𝑥 . Codes with polynomial decoding
procedures can be used for transmission of digital information
over a noisy channel.

In general, error-correcting codes may be divided in two
groups: block codes and convolutional codes [2], [3]. Block
codes offer greater error-correcting capability, but their
decoding algorithms are not very efficient. Convolutional
codes are a class of error-correcting codes with polynomial
encoding and decoding procedures. They are used in numerus
applications to achieve reliable data transfer and reliable data
storage. For example, convolutional codes are used in digital
video storage, satellite communications, GSM networks,
numerous standards: GPRS, EDGE, LTE, 3G, and so on. In
this paper we propose a framework that generalizes the
concept of convolutional codes. In Section II we briefly
introduce certain aspects of convolutional codes that are
important for presenting our idea. In Section III we present the
new class of convolutional codes. We consider these codes to
be generalization of the convolutional codes. We propose

C

Funded by a project from the Faculty of Computer Science and
Engineering, Ss. Cyril and Methodius University.

Fig. 2. A recursive convolutional encoder

Fig. 1. A convolutional encoder

output

input
DDD

input
D

output

DD
shift register

encoding and decoding mechanisms. In section IV we discuss
possible applications of the new class of convolutional codes.

II. CONVOLUTIONAL CODES
Convolutional codes are one of the oldest known classes

of error-correcting codes. They were introduced by P. Elias in
1955 [2]. Fig. 1 shows a circuitry that may be used for
producing convolutional codes. This circuitry is known as
convolutional encoder. The convolutional encoder is built
with a shift register of length 3 and combinatorial logic
elements, i.e. XOR gates. The shift register consists of 3
memory cells (denoted with D) that introduce one-bit delay.
In one clock cycle, one information bit enters the shift register
from the left side. Data bits that are already in the register are
shifted to the right. Let a semi-infinite stream of information
bits 𝑥 = (𝑥M, 𝑥N, … , 𝑥(, …) is provided to the input of the
convolutional encoder. In this sequence an information bit 𝑥(
is considered older than the information bit 𝑥(PM . Let the
convolutional encoder be configured to output a semi-infinite
sequence of parity bits 𝑦 = (𝑦M, 𝑦N, … , 𝑦(, …). The principle
of operation of the convolutional encoder is simple: at time
𝑡 = 0 the content of the shift register is 0; a parity bit 𝑦(is
computed as

𝑦(= 𝑥(⊕ 𝑥(SM ⊕ 𝑥(ST. (4)

where, the symbol ⊕ denotes the binary operation XOR.
Convolutional encoders may be divided in two major

categories: recursive convolutional encoders and non-
recursive convolutional encoders. The encoder on fig. 1 is an
example of a non-recursive encoders. Fig. 2 shows an example
of a recursive convolutional encoder. A recursive
convolutional encoder is obtained from a non-recursive
encoder with two branches of combinatorial elements that
may output simultaneously two parity bits. One of the two

branches is fed back to the input of the shift register. This way,
in a recursive convolutional encoder outputted parity bit is
influenced by all older information bits.

Fig. 3 shows a framework for a convolutional encoder with
𝐾 -bit shift register. The 𝐾 -bit shift register consists of K
memory cells (denoted with D) that introduce one-bit delay.
We can obtain a particular encoder using the framework by
specifying 𝐺(= 1 or 𝐺(= 0 for all elements 𝐺(, 𝑖 =
1, 2, … , 𝐾 . Here 𝐺(= 1 denotes short circuit and 𝐺(= 0
denotes high impedance. An encoder is completely defined by
specifying all elements 𝐺(. Particular values of the elements
𝐺(may be represented with a generator vector 𝐺 =
[𝐺M, 𝐺N, … , 𝐺X]. Sometimes, the generator vector 𝐺 may be
given as octal number. For example, the generator vector for
the encoder on fig. 1 is 𝐺 = 5. Hence, outputted bits of a
convolutional encoder with shift register of length 𝐾 are
computed as

𝑦(= 𝑥(⊕ 𝐺M ∙ 𝑥(SM ⊕⋯⊕𝐺X𝑥(SX (5)

The length 𝐾 of the shift register is known as constrained
length of the convolutional code. In general, larger shift
register provides larger number of input bits that influence
outputted parity bits. It is believed that larger constrained
length 𝐾 may provide a convolutional code that may recover
larger number of errors. On the other side, larger constrained
length 𝐾 makes the decoding of the convolutional code more
complex and demanding in terms of time, space, and
hardware.

A convolutional encoder with 𝐾 shift registers can be
considered a finite state machine with 2X states. A state in the
finite state machine is identified with the content of the shift
register. Transition from one state to another produces a parity

Fig. 5. Proposed convolutional encoder

Fig. 3. A framework for a convolutional encoder with 𝐾-bit shift register

Fig. 4. Trellis diagram of a convolutional encoder

Fig. 6. Trellis diagram of the proposed convolutional encoder

input

shift register

Combinatorial Logic

Counter

output

input DD

G1 G2

D

GK

…

…
……

output

1 2 K

0 0

1

2

3

4

5

6

7

0
1

0
0
1

0
1

0
1

0
1

0
1

1

1
0 0

1
0

1
4

0
12

4 4

2

1

3

5

6
7

0
1

1
0

0
1

timet=0 t=1 t=2 t=3

0

2K-1

2K

2K+1-1

2K+N-1

…
…

…

… …

0

2K-1

2K+1-1

2K+N-1

2K

…

time t=i

…

…
…

bit. Given a finite state machine, progression of the machine
through the states with respect to the time is known as trellis
diagram of the machine. Trellis diagram is labelled M-partite
graph, in which every path represents a valid codeword. Fig.
4 shows the trellis diagram that corresponds to the
convolutional encoder given on fig. 1. Vertices are labeled
with decimal numbers from 0 to 7. Vertices represent all states
of the shift register. Edge labels represent parity bit that will
be outputted for that transition.

Encoding process of both the block codes and the
convolutional codes may be described with trellis diagram.
Trellis diagram of error-correcting codes give hint about the
decoding. A decoder may be configured to guess the mos
likely path through the trellis. The block codes, in general,
have exponential number of states; thus, the decoding process
is much complex. The number of states of the trellis diagram
of a convolutional code is determined by the size of the shift
register. Hence, convolutional codes have better decoding
complexity; although, convolutional codes have weaker error
correcting capability. In general, all convolutional codes can
be decoded with the Viterbi algorithm [5], [6]. Memory
requirements of the Viterbi decoder are proportional with the
constrained length 𝐾. Another algorithm that may be used for
decoding is the BCJR algorithm [7]. Memory requirements of
the BCJR decoder are proportional with the product of the
length of the sequence and the number of states of the shift
register.

Popular convolutional codes are the turbo codes. Turbo
codes were the first error-correcting codes that demonstrated
reliable communications near the channel capacity with
practically feasible hardware [8]. Due to their excellent error-
correcting capability, they are part of many modern
communication technologies, like LTE [9]. An LTE turbo
encoder is a systematic encoder made of two 8-state recursive
convolutional encoders. Recursive encoder used in turbo
codes is given on fig. 2. Generator polynomials of the LTE
turbo codes are fixed and specified in a standardized
specification [9].

III. GENERALIZED CONVOLUTIONAL CODES
From fig. 3 it can be observed that the framework with 𝐾-

bit shift register can specify 2X convolutional encoders. Thus,
only 2X non-recursive encoders can be built. Additionally,
this framework specifies that only 2XPM recursive
convolutional encoders can be built. However, the number of

possible convolutional encoders is much larger than 2X . In
this paper, our goal is to provide a framework for a
convolutional encoder that may specify all possible
convolutional encoders. Principle of operation of the proposed
framework is given on fig. 5.

The framework on fig. 5 generalizes the concept of
convolutional encoder. The convolutional encoder consists of
a 𝐾-bit shift register, a combinatorial logic, and a 𝑁-bit shift
register. Principle of operation of the shift register and the
combinatorial logic is similar to the principle of operation of
the regular convolutional encoder (fig. 1 and fig. 2). The
combinatorial logic convolutes the bits stored in the shift
register and the bit provided to the input in order to produce
an output bit. A counter is added to the framework. The
counter is incremented with each input bit. In a simplest
embodiment, the counter may be 1-bit counter. The purpose
of the counter is to increase the number of states of the
encoder. A state may be identified with the content of the
counter and the content of the shift register. Thus, the
proposed encoder has 2XP] states. Each time the counter is
incremented, the combinatorial logic changes the formula for
computing the output bit. Hence, the parameters of the
encoder appear to vary over time.

The proposed encoder may be considered as finite state
machine with 2XP] states. The trellis diagram of the finite
state machine is given on fig. 6. It can be observed that the
trellis diagram has larger number of states compared to the
trellis of a regular convolutional encoder (fig. 4). An important
feature of the trellis is that the 2XP] states may be divided into
2] disjoint sets, wherein each set comprises of 2X states.
Transitions are possible from one set of states to another set.
This property makes the decoding of the proposed
convolutional codes is with the same complexity as the regular
convolutional codes.

Hardware implementation of the proposed convolutional
encoder consists of a SRAM memory operated as table, a
register to hold the current state and multiplexers (fig. 7). The
table is indexed with the number of states of the finite state
machine. The content of the current-state register is provided
as index to the read ports of the table. The output of the table
is provided as input to the multiplexers. An input bit is
provided as selection control to the multiplexers. This way,
the appropriate fields of the outputted entry are selected.

Fig. 7. Implementation of the proposed convolutional encoder

Fig. 8. Decoding of the proposed convolutional encoder

Current
state

Next state
xi=0

Next state
xi=1

Output bit
xi=0

Output bit
xi=1

0

1

2K+N-1

input

output

mux mux

Current state

0

2K-1

2K

2K+1-1

2K+1

2K+2-1

2K+N-1

2K+N-1

……

……

timet=0 t=1 ……….. t=N-1

The proposed convolutional codes can be decoded with the
Viterbi algorithm and with the BCJR algorithm. Decoding
complexity of the proposed codes remains the same as
decoding complexity of the regular convolutional codes. Fig.
8 shows another view of the trellis diagram of the proposed
codes. The diagram shows only possible transitions from one
set of states to another set of states at one point of time. It can
be observed that at any time, the number of active states is the
same as with the regular convolutional codes. Therefore, the
decoding complexity remains the same.

IV. CONCLUSION
We have proposed a framework for generating a new class

of convolutional codes. We consider the new class of codes as
generalization of the concept of a convolutional code. The
proposed framework offers possibility to specify
convolutional codes that cannot be specified with the
previously known methods for specifying convolutional
codes. One important feature of the proposed convolutional
codes is that the decoding complexity remains the same as the
decoding complexity of the regular convolutional codes,
although the number of states increases. The proposed
encoder can be efficiently implemented in hardware using
SRAM memory cells operated as table. The SRAM table may
be populated with the possible transitions at the run-time.
Therefore, the parameters of the convolutional codes need not

to be specified at the design stage of the communication
system. Our future goal is to search over theses codes and to
find a convolutional code with improved error correcting
capability.

REFERENCES
[1] C. E. Shannon, “The mathematical theory of communication,” Bell

System Technical Journal, vol. 27, pp. 379–423, July 1948.
[2] F. J. MacWilliams, N.J.A. Sloane, “The Theory of Error-Correcting

Codes,” North Holland, Amsterdam, 1977.
[3] S. Lin, D. J. Costello, “Error Control Coding,” Pearson, 2005.
[4] Elias, P. “Coding for noisy Channels.” IRE Convention Record, Part

IV, pp. 37-46 (1955).
[5] Viterbi, A. J. “Error bounds for convolutional codes and an

asymptotically optimum decoding algorithm.” IEEE Transactions on
Information Theory vol. 13, no. 2, pp. 260–269, 1967.

[6] Forney, G. D. “The Viterbi Algorithm.” IEEE Transactions on
Information Theory vol. 61, no. 3, pp. 268–278, 1973.

[7] Bahl, L., Cocke, J., Jelinek, F., Raviv, J. “Optimal Decoding of Linear
Codes for minimizing symbol error rate.” IEEE Transactions on
Information Theory, vol. 20, no. 2, pp.284-287, 1974.

[8] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: Turbo-codes,” in Proc. ICC,
Geneva, Switzerland, May 1993.

[9] ETSI Technical Specification, “LTE; Evolved Universal Terrestrial
Radio Access (E-UTRA); Multiplexing and channel coding,” 3GPP TS
36.212 version 8.8.0 Release 8, Jan. 2011.

