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Abstract—In this paper we propose a generalization of the 
convolutional codes. The proposed generalization of the 
convolutional codes offers the possibility to discover previously 
unknow convolutional codes. For example, convolutional codes 
with pseudo-random time-varying trellis diagram that may 
improve error-correcting capabilities of the convolutional 
codes. An important property of the proposed generalization of 
the convolutional codes is that the decoding complexity remains 
the same as the decoding complexity of the ordinary 
convolutional codes. We propose encoding and decoding 
schemes for the generalized convolutional codes.  

Keywords—error-correcting codes, convolutional codes, turbo 
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I. INTRODUCTION 
Channel coding plays an important part in modern 

communication systems. In [1], Shannon gave probabilistic 
proof that we can communicate with an arbitrary small 
probability of error as long as the communication rate is below 
the channel capacity. Error-correcting codes provide 
constructive solution to the Shannon’s theorem. Many error-
correcting codes were developed to provide low-power and 
reliable communication over unreliable channels.  

Let 𝐹 be a finite alphabet of |𝐹| letters and let 𝐹# be the 
set of all strings of length 𝑛  over 𝐹 . In general, an error-
correcting code 𝐶 is a subset of 𝐹# of 𝑀 elements. Elements 
of the code 𝑐( ∈ 𝐶 are called codewords. 

Let 𝑑(𝑥, 𝑦) denote the Hamming distance between two 
strings 𝑥, 𝑦 ∈ 𝐹# . The Hamming distance 𝑑(𝑥, 𝑦)   is the 
number of positions in which 𝑥 and 𝑦 differ. Let 𝑑 denote the 
minimum distance 𝑑 of the code 𝐶 defined as 

𝑑 = min4𝑑5𝑐(, 𝑐678𝑐(, 𝑐6 ∈ 𝐶, 𝑖 ≠ 𝑗< (1) 

If the minimum distance 𝑑 is known, we say that 𝐶 is an 
(𝑛,𝑀, 𝑑) code. The larger the minimum distance 𝑑 of a code 
𝐶 is, the better the error-correcting capability the code 𝐶 is.  

The code 𝐶 is linear if its codewords form 𝑘- dimensional 
linear subspace in 𝐹#.  We will write [𝑛, 𝑘, 𝑑] to denote that 
the code  is linear.  For linear codes there exist 𝑘  basis 
vectors that are kept as rows in a generator matrix 𝐺.  For each 
linear code 𝐶 there is a generator matrix 𝐺 of type 𝐺 = [𝐼	𝐴] , 
where 𝐼 is the identity matrix.  We may say that the generator 
matrix 𝐺 = [𝐼	𝐴] is in standard form.  It is well-known that 
for linear codes there exist additional matrix, known as the 
parity check matrix 𝐻, defined as 

𝐻𝑐(E = 0, ∀𝑐( ∈ 𝐶	 (2) 

Let 𝐺 = [𝐼	𝐴] be the generator matrix of a code 𝐶, then 
𝐻 = [−𝐴E	𝐼]is the parity check matrix of the code 𝐶. 

A k-letter message may be encoded in a n-letter codeword 
𝑐. The codeword 𝑐 may be sent over a noisy channel. The 
noisy channel may alter few bits of the codeword. A receiver 
may receive a n-bit string 𝑥 obtained from the codeword 𝑐 in 
which some bits have been altered. The process of finding the 
nearest, in terms of Hamming distance 𝑑(𝑥, 𝑦), codeword 𝑐̂ ∈
𝐶	 to the string 𝑥, is known as decoding 

𝑐̂ = argmin4𝑑5𝑥, 𝑐678𝑐6 ∈ 𝐶< (3) 

Some codes have efficient (polynomial) procedure to find 
the nearest codeword 𝑐̂ ∈ 𝐶 (in terms of Hamming distance) 
to the received string 𝑥 . Codes with polynomial decoding 
procedures can be used for transmission of digital information 
over a noisy channel.  

In general, error-correcting codes may be divided in two 
groups: block codes and convolutional codes [2], [3]. Block 
codes offer greater error-correcting capability, but their 
decoding algorithms are not very efficient. Convolutional 
codes are a class of error-correcting codes with polynomial 
encoding and decoding procedures. They are used in numerus 
applications to achieve reliable data transfer and reliable data 
storage. For example, convolutional codes are used in digital 
video storage, satellite communications, GSM networks, 
numerous standards: GPRS, EDGE, LTE, 3G, and so on. In 
this paper we propose a framework that generalizes the 
concept of convolutional codes. In Section II we briefly 
introduce certain aspects of convolutional codes that are 
important for presenting our idea. In Section III we present the 
new class of convolutional codes. We consider these codes to 
be generalization of the convolutional codes. We propose 
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Fig. 2. A recursive convolutional encoder 

 
Fig. 1. A convolutional encoder 
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encoding and decoding mechanisms. In section IV we discuss 
possible applications of the new class of convolutional codes. 

II. CONVOLUTIONAL CODES 
Convolutional codes are one of the oldest known classes 

of error-correcting codes. They were introduced by P. Elias in 
1955 [2]. Fig. 1 shows a circuitry that may be used for 
producing convolutional codes. This circuitry is known as 
convolutional encoder. The convolutional encoder is built 
with a shift register of length 3 and combinatorial logic 
elements, i.e. XOR gates. The shift register consists of 3 
memory cells (denoted with D) that introduce one-bit delay. 
In one clock cycle, one information bit enters the shift register 
from the left side. Data bits that are already in the register are 
shifted to the right. Let a semi-infinite stream of information 
bits 𝑥 = (𝑥M, 𝑥N, … , 𝑥(, … )  is provided to the input of the 
convolutional encoder. In this sequence an information bit 𝑥( 
is considered older than the information bit 𝑥(PM .  Let the 
convolutional encoder be configured to output a semi-infinite 
sequence of parity bits 𝑦 = (𝑦M, 𝑦N, … , 𝑦(, … ). The principle 
of operation of the convolutional encoder is simple: at time 
𝑡 = 0 the content of the shift register is 0; a parity bit 𝑦(  is 
computed as 

𝑦( = 𝑥( ⊕ 𝑥(SM ⊕ 𝑥(ST. (4) 

where, the symbol ⊕ denotes the binary operation XOR. 
Convolutional encoders may be divided in two major 

categories:  recursive convolutional encoders and non-
recursive convolutional encoders. The encoder on fig. 1 is an 
example of a non-recursive encoders. Fig. 2 shows an example 
of a recursive convolutional encoder. A recursive 
convolutional encoder is obtained from a non-recursive 
encoder with two branches of combinatorial elements that 
may output simultaneously two parity bits. One of the two 

branches is fed back to the input of the shift register. This way, 
in a recursive convolutional encoder outputted parity bit is 
influenced by all older information bits.  

Fig. 3 shows a framework for a convolutional encoder with 
𝐾 -bit shift register. The 𝐾 -bit shift register consists of K 
memory cells (denoted with D) that introduce one-bit delay. 
We can obtain a particular encoder using the framework by 
specifying 𝐺( = 1  or 𝐺( = 0  for all elements 𝐺( , 𝑖 =
1, 2, … , 𝐾 . Here 𝐺( = 1  denotes short circuit and 𝐺( = 0  
denotes high impedance. An encoder is completely defined by 
specifying all elements 𝐺(. Particular values of the elements 
𝐺(  may be represented with a generator vector 𝐺 =
[𝐺M, 𝐺N, … , 𝐺X]. Sometimes, the generator vector 𝐺  may be 
given as octal number. For example, the generator vector for 
the encoder on fig. 1 is 𝐺 = 5. Hence, outputted bits of a 
convolutional encoder with shift register of length 𝐾  are 
computed as   

𝑦( = 𝑥( ⊕ 𝐺M ∙ 𝑥(SM ⊕⋯⊕𝐺X𝑥(SX (5) 

The length 𝐾 of the shift register is known as constrained 
length of the convolutional code. In general, larger shift 
register provides larger number of input bits that influence 
outputted parity bits. It is believed that larger constrained 
length 𝐾 may provide a convolutional code that may recover 
larger number of errors. On the other side, larger constrained 
length 𝐾 makes the decoding of the convolutional code more 
complex and demanding in terms of time, space, and 
hardware.     

A convolutional encoder with 𝐾  shift registers can be 
considered a finite state machine with 2X states. A state in the 
finite state machine is identified with the content of the shift 
register. Transition from one state to another produces a parity 

 
Fig. 5. Proposed convolutional encoder  

 
Fig. 3. A framework for a convolutional encoder with 𝐾-bit shift register 

 
Fig. 4. Trellis diagram of a convolutional encoder 

 
Fig. 6. Trellis diagram of the proposed convolutional encoder  
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bit. Given a finite state machine, progression of the machine 
through the states with respect to the time is known as trellis 
diagram of the machine.  Trellis diagram is labelled M-partite 
graph, in which every path represents a valid codeword. Fig. 
4 shows the trellis diagram that corresponds to the 
convolutional encoder given on fig. 1. Vertices are labeled 
with decimal numbers from 0 to 7. Vertices represent all states 
of the shift register. Edge labels represent parity bit that will 
be outputted for that transition.  

Encoding process of both the block codes and the 
convolutional codes may be described with trellis diagram. 
Trellis diagram of error-correcting codes give hint about the 
decoding. A decoder may be configured to guess the mos 
likely path through the trellis. The block codes, in general, 
have exponential number of states; thus, the decoding process 
is much complex. The number of states of the trellis diagram 
of a convolutional code is determined by the size of the shift 
register. Hence, convolutional codes have better decoding 
complexity; although, convolutional codes have weaker error 
correcting capability. In general, all convolutional codes can 
be decoded with the Viterbi algorithm [5], [6]. Memory 
requirements of the Viterbi decoder are proportional with the 
constrained length 𝐾. Another algorithm that may be used for 
decoding is the BCJR algorithm [7].  Memory requirements of 
the BCJR decoder are proportional with the product of the 
length of the sequence and the number of states of the shift 
register. 

Popular convolutional codes are the turbo codes. Turbo 
codes were the first error-correcting codes that demonstrated 
reliable communications near the channel capacity with 
practically feasible hardware [8]. Due to their excellent error-
correcting capability, they are part of many modern 
communication technologies, like  LTE [9]. An LTE turbo 
encoder is a systematic encoder made of two 8-state recursive 
convolutional encoders. Recursive encoder used in turbo 
codes is given on fig. 2. Generator polynomials of the LTE 
turbo codes are fixed and specified in a standardized 
specification [9]. 

III. GENERALIZED CONVOLUTIONAL CODES 
From fig. 3 it can be observed that the framework with 𝐾-

bit shift register can specify 2X convolutional encoders. Thus, 
only 2X  non-recursive encoders can be built. Additionally, 
this framework specifies that only 2XPM  recursive 
convolutional encoders can be built. However, the number of 

possible convolutional encoders is much larger than 2X . In 
this paper, our goal is to provide a framework for a 
convolutional encoder that may specify all possible 
convolutional encoders. Principle of operation of the proposed 
framework is given on fig. 5.   

The framework on fig. 5 generalizes the concept of 
convolutional encoder. The convolutional encoder consists of 
a 𝐾-bit shift register, a combinatorial logic, and a 𝑁-bit shift 
register. Principle of operation of the shift register and the 
combinatorial logic is similar to the principle of operation of 
the regular convolutional encoder (fig. 1 and fig. 2). The 
combinatorial logic convolutes the bits stored in the shift 
register and the bit provided to the input in order to produce 
an output bit. A counter is added to the framework. The 
counter is incremented with each input bit. In a simplest 
embodiment, the counter may be 1-bit counter. The purpose 
of the counter is to increase the number of states of the 
encoder. A state may be identified with the content of the 
counter and the content of the shift register. Thus, the 
proposed encoder has 2XP]  states. Each time the counter is 
incremented, the combinatorial logic changes the formula for 
computing the output bit. Hence, the parameters of the 
encoder appear to vary over time.  

The proposed encoder may be considered as finite state 
machine with 2XP]  states. The trellis diagram of the finite 
state machine is given on fig. 6. It can be observed that the 
trellis diagram has larger number of states compared to the 
trellis of a regular convolutional encoder (fig. 4). An important 
feature of the trellis is that the 2XP] states may be divided into 
2]  disjoint sets, wherein each set comprises of 2X  states. 
Transitions are possible from one set of states to another set. 
This property makes the decoding of the proposed 
convolutional codes is with the same complexity as the regular 
convolutional codes.   

Hardware implementation of the proposed convolutional 
encoder consists of a SRAM memory operated as table, a 
register to hold the current state and multiplexers (fig. 7). The 
table is indexed with the number of states of the finite state 
machine. The content of the current-state register is provided 
as index to the read ports of the table. The output of the table 
is provided as input to the multiplexers. An input bit is 
provided as selection control to the multiplexers. This way, 
the appropriate fields of the outputted entry are selected. 

 
Fig. 7. Implementation of the proposed convolutional encoder  

 
Fig. 8. Decoding of the proposed convolutional encoder  

Current 
state

Next state
xi=0

Next state
xi=1

Output bit
xi=0

Output bit 
xi=1

0

1

2K+N-1

input

output

mux mux

Current state

0

2K-1

2K

2K+1-1

2K+1

2K+2-1

2K+N-1

2K+N-1

……

……

timet=0 t=1 ……….. t=N-1



The proposed convolutional codes can be decoded with the 
Viterbi algorithm and with the BCJR algorithm. Decoding 
complexity of the proposed codes remains the same as 
decoding complexity of the regular convolutional codes. Fig. 
8 shows another view of the trellis diagram of the proposed 
codes. The diagram shows only possible transitions from one 
set of states to another set of states at one point of time. It can 
be observed that at any time, the number of active states is the 
same as with the regular convolutional codes. Therefore, the 
decoding complexity remains the same.   

IV. CONCLUSION 
We have proposed a framework for generating a new class 

of convolutional codes. We consider the new class of codes as 
generalization of the concept of a convolutional code. The 
proposed framework offers possibility to specify 
convolutional codes that cannot be specified with the 
previously known methods for specifying convolutional 
codes. One important feature of the proposed convolutional 
codes is that the decoding complexity remains the same as the 
decoding complexity of the regular convolutional codes, 
although the number of states increases. The proposed 
encoder can be efficiently implemented in hardware using 
SRAM memory cells operated as table. The SRAM table may 
be populated with the possible transitions at the run-time.  
Therefore, the parameters of the convolutional codes need not 

to be specified at the design stage of the communication 
system. Our future goal is to search over theses codes and to 
find a convolutional code with improved error correcting 
capability. 
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