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Abstract – The thermoelectric mechanism of electromagnetic-acoustic transformation of the
energy in an organic conductor with a quasi–two-dimensional electron energy spectrum (Q2D)
placed in an external magnetic field has been considered. The amplitude of the acoustic wave
excited by the temperature oscillations in a Q2D organic conductor was calculated for both the
isothermal and the adiabatic thermal boundary condition. Angular oscillations of the amplitude
resulting from the periodic dependence of the electron velocity on the angle between the normal
to the layers and the magnetic field has been observed as expected. A comparison with the
inductive mechanism of EMAT is made in order to determine the conditions at which the
thermoelectric mechanism is dominant over the inductive one in the presence of a magnetic field.
The thermoelectric mechanism of EMAT allows new important information on the electronic
structure of the organic layered conductors to be obtained.

Copyright c© EPLA, 2008

Introduction. – The search for new materials in the
sixties attracted the attention of researches to conductors
of organic origin. Most of them have a metal-type electrical
conductivity, and their electron energy spectrum can be
studied with the help of methods developed for metals. For
example, these methods can be rightfully used for studying
transport phenomena in organic conductors [1–3], having
a layered structure with a sharply pronounced anisotropy
in the electrical conductivity: the conductivity across the
layers is much smaller than the conductivity in the layer
plane. The strong anisotropy of electrical conductivity
is apparently associated with a strong anisotropy in the
velocity of charge carriers on the Fermi surface, i.e., their
energy

ε(p) =

∞
∑

n=0

εn(px, py) cos
(anpz
�

)

(1)

depends weakly on the momentum projection pz = pn on
the normal n to the layers (a is the distance between
adjacent layers, and � is Planck’s constant). In tight-
binding approximation, the functions εn(px, py) with n� 1
are much less than the Fermi energy εF and fall rapidly
with increasing n.
A series of effects exists which are typical for layered

conductors of organic origin with metal-type conductivity,
but non-existent for ordinary metals. Among these effects,

arising from the Q2D nature of the charge carrier energy
spectrum, is the high acoustic transparency of an organic
conductor in the absence of charge carrier drift along the
acoustic wave vector as well as the orientation effect —a
strong dependence of kinetic parameters on the orientation
of the magnetic field with respect to the layers.
The investigation of transport phenomena in layered

conductors is of great interest because it opens new possi-
bilities of determining the electronic structure of these
conductors in fine details. The theoretical and experi-
mental investigations of the electrical conductivity and
magnetoresistance in Q2D conductors have been subject
of an enormous number of studies [4–11]. In ref. [12], a
detailed theoretical report is given on the propagation of
electromagnetic and acoustic oscillations in organic Q2D
conductors. As far as we are aware, there are no experi-
mental results on acoustoelectronic phenomena in Q2D
conductors yet. In recent years there has been a rising
interest in the research on thermoelectric effects in organic
Q2D conductors. A number of publications appeared in
which the results of experimental (see ref. [13]) and theo-
retical studies [14–16] of the thermoelectric coefficients
were reported.
It is well known that electromagnetic and acoustic waves

in conductors form a coupled system that permits their
mutual transformation [17,18]. When an electromagnetic
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wave of frequency ω is incident on a conducting half-space
z � 0 an acoustic wave with the same frequency is excited
in the conductor, traveling in the positive z-direction.
This phenomenon is known as an electromagnetic-acoustic
transformation (EMAT) of the energy [19]. Few mech-
anisms of EMAT exist in the conducting media. In the
absence of an external magnetic field the inertial mecha-
nism is a basic one [20], and in the presence of an external
magnetic field there exist deformation, inductive and ther-
moelectric mechanisms [19,21]. The inertial mechanism
is connected with the non-inertiality of the concomitant
coordinate system, which moves together with the crystal
lattice (Stewart-Tolman effect), the deformation mech-
anism is associated with the energy renormalization for
charge carriers when the crystal is deformed, and the
inductive mechanism is due to the Lorentz force acting on
the conduction electrons. The thermoelectric mechanism
of EMAT occurs when the condition for normal skin effect,
l≪ δs (where l is the mean free path of the conduction
electrons and δs is the skin depth of the electromagnetic
field), is fulfilled. In that case when an electromagnetic
wave of frequency ω is incident on the surface of the
conductor, whose symmetry axis does not coincide with
the normal to the surface, nonuniform temperature
oscillations of the same frequency appear due to the
thermoelectric effect. These oscillations generate thermo-
electric stresses which induce acoustic oscillations in the
conductor. In ordinary metals the thermoelectric mech-
anism of EMAT has been well studied [22–24]. For what
concerns the Q2D organic conductors, few years ago a
detailed publication appeared on EMAT due to the defor-
mation mechanism in these conductors [25]. Assuming the
present interest in the research of thermoelectric phenom-
ena in Q2D organic conductors as well as the fact that to
date there is no investigation made on the thermoelectric
mechanism of EMAT in these conductors, this paper deals
with theoretical analyses of the dependence of the acoustic
wave amplitude excited by the temperature oscillations in
Q2D organic conductors on the magnitude and orienta-
tion of an external magnetic field. Two cases of boundary
thermal conditions, isothermal and adiabatic will be
considered. The amplitude of the acoustic wave associ-
ated with the inductive mechanism will also be calculated
in order to compare the nature of the attenuation of both
the waves in the presence of an external magnetic field.

Formulation of the problem. – In this section we
will present the complete system of equations necessary
for solving the problem of EMAT due to both the induc-
tive and thermoelectric mechanisms. Suppose that an elec-
tromagnetic wave (Ex =Ez = 0, Ey =E) of frequency ω is
incident normally on a surface (along the less conductivity
axis (z-axis) i.e., k= (0, 0, k)) of a Q2D organic conductor
placed in a magnetic field tilted at an angle π/2− θ with
respect to the conductor’s surface,B= (B sin θ, 0, B cos θ).
The wave is taken to be monochromatic, so the differen-
tiation with respect to the time variable is equivalent to

multiplication by (−iω). The frequency of the electromag-
netic field is constraint with the condition ωτ ≪ 1 (τ is the
relaxation time of the conduction electrons), which is, as
a rule, always fulfilled when an EMAT is consider.
In a conducting medium, the Lorentz force is a source

of longitudinal as well as transversal acoustic oscillations.
Apart from that, the temperature oscillations induce
only longitudinal acoustic oscillations. In order to make
a comparison between both mechanisms, we need to
calculate the amplitudes of the longitudinal acoustic waves
excited by each of them.
In the absence of the thermoelectric mechanism the

basic one is the inductive mechanism of EMAT. In that
case the system of equations necessary for describing the
propagation of the acoustic wave in a conductor, excited
by the incident electromagnetic wave, contains the equa-
tion of the theory of elasticity for ionic displacement U:

̺
∂2Ui
∂t2

= λiklm
∂Ulm
∂xk

+Fi, (2)

as well as Maxwell’s equations

curlB= μ0j; curlE=−
∂B

∂t
. (3)

Here ̺ and λiklm are the density and elastic tensor of the
crystal, μ0 is the magnetic permeability of the vacuum,
Ulm is the deformation tensor, and Fi = (j×B)i is the
Lorentz force.
Since the electric field of the incident electromagnetic

wave is along the y-axis it follows that the only nonzero
component of the current density is its y-component, i.e.,
j= (0, j, 0). The surface of the conductor is assumed to
be free, so that ∂Uzl∂z |z=0= 0. Consequently, the system of
equations above can be rewritten in the following form:

ω2̺Uzl = λzzzzk
2Uzl+ jyB sin θ, (4)

∂Bx
∂z
= μ0jy; −

∂Ey
∂z
= iω Bx, (5)

where λzzzz = s
2̺, and s is the acoustic-wave velocity.

For the amplitude of the acoustic wave excited by the
temperature oscillations in the Q2D organic conductor
UTzl, to be calculated, the temperature distribution associ-
ated with the oscillations of the electromagnetic field must
be determined first.
The complete system of equations describing the

propagation of the acoustic wave in the conductor in
the presence of the heat flux Q consists of the thermal
conduction equation

C
∂Θ

∂t
+divQ= 0, (6)

accompanied by the equation for the heat flux, which takes
into account the thermoelectric effects,

Qi = kBTαikjk −κik
∂Θ

∂xk
, (7)
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and the equation of the theory of elasticity including the
thermoelectric stress tensor σTik =−̺s

2βΘ(z, t)δik :

̺
∂2Ui
∂t2

−λiklm
∂Ulm
∂xk

=−̺s2βδik
∂Θ

∂xk
. (8)

Here, Θ is linear in the amplitude of the electromagnetic-
wave additive term to the equilibrium temperature T ,
C is the volumetric heat capacity, kB is the Boltzmann
constant, αik is the thermoelectric power tensor, κik is
the thermal conductivity tensor, and βV is the volumetric
thermal expansion coefficient.
For the geometry under consideration (the electromag-

netic wave is incident normally on the surface of the
conductor) all of the quantities depend only on z and the
above set of equations take the following form:

−iωCΘ+
∂Qz
∂z
= 0, (9)

Qz = kBTαzyjy −κzz
∂Θ

∂z
, (10)

∂2UTzl
∂z2

+ q2UTzl = β
∂Θ

∂z
, (11)

where q= ω/s.
By substituting eq. (10) in eq. (9) one obtains the follow-

ing differential equation for the temperature distribution
in the conductor:

∂2Θ

∂z2
+
iωC

κzz
Θ=

kBTαzy
∂jy(z)
∂z

κzz
. (12)

Equations (11) and (12) must be supplemented with
the boundary condition taking into account the thermal
conditions at the surface. We shall consider two boundary
conditions: isothermal and adiabatic. Consequently, the
boundary conditions for the temperature are

Θ(z = 0) = 0, and
∂Θ

∂z
|z=0= 0, (13)

and for the amplitude of the acoustic wave in the conduc-
tor are

∂UTzl
∂z
|z=0= 0, and

∂UTzl
∂z
|z=0=−βΘ |z=0, (14)

respectively.

Calculation of the amplitude UIzl. – The amplitude
of the acoustic wave due to the inductive mechanism can
be calculated by using eqs. (4) and (5). The current density
is obtained from Maxwell’s equations, and has the form

jy =−
ik2

ωμ0
ei(kz−ωt), (15)

where

k=
1+ i

δs
, and δs =

√

2ρyy
ωμ0
. (16)

The ρyy = 1/σyy component of the electric resistivity
tensor ρij can be derived by means of the σyy component
of the electrical conductivity tensor σij . In a magnetic field
the components of the conductivity tensor, which relate
the current density to the electric field E,

ji = σijEj , (17)

can be found using the Boltzmann transport equation
in the τ approximation for the collision integral [26].
The equation above is valid only in the case of normal
skin effect when the relation between current density and
electric field is local to a high degree of accuracy.
Without any model assumptions about the electron

energy spectrum, the quasi-classical expression for σij in
the case of periodic motion of a charge with period TB =
2π/Ω in a magnetic fieldB, and in the main approximation
in the quasi–two-dimensionality parameter η≪ 1 has the
form

σij =
2e3B

(2π�)3

∫

dpB

∫ TB

0

dtvi(t)

∫ t

−∞
dt′vj(t

′)e
t′−t
τ . (18)

Here e is the charge of the conduction electrons,
Ω= eB/m∗ is the gyration frequency of an electron in
the magnetic field B, m∗ is its cyclotron effective mass,
pB = pxsin θ+ pzcos θ= const is the momentum projec-
tion in the magnetic-field direction, and t is the time
motion of the conduction electrons in the magnetic field
under the influence of the Lorentz force dp/dt= e(v×B).
In the case of a layered conductor whose electron energy

spectrum has the form (only the first two terms in eq. (1))

ε(p) =
p2x+ p

2
y

2m
− η
vF�

a
cos
apz
�
, (19)

where vF is the characteristic Fermi velocity of the
electrons along the layers, the expression for σyy in
the main approximation in the small parameter of the
quasi–two-dimensionality of the electron energy spectrum
η takes the form

σyy = ρ
−1
yy =

σ0
(Ωτ)2 cos2 θ+1

. (20)

Here σ0 coincides in order of magnitude with the electrical
conductivity along the layers in the absence of a magnetic
field.
Substituting eq. (15) in eq. (4), and using eqs. (16)

and (20), one obtains the following expression for the
amplitude of the acoustic wave associated with the Lorentz
force:

UIzl =
iq2B sin θ

ωμ0ρ
{

q2

iωµ0σ0
(1+ ( eτB cos θm∗ )2)− 1

}
. (21)

Calculation of the amplitude UTzl. – In order to
calculate the amplitude of the acoustic wave excited by
the temperature oscillations in a Q2D conductor, we must
first determine the temperature distribution by means of
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vz = ηvF

{

sin ξ

[

J0(ζ tan θ)+ 2

∞
∑

i=1

J2i(ζ tan θ) cos(2iΩcos θt)

]

− cos ξ

∞
∑

i=0

J2i+1(ζ tan θ) sin((2i+1)Ω cos θt)

}

. (32)

eq. (12). Using the expression for the current density,
eq. (15), eq. (12) can be rewritten in the following form:

∂2Θ

∂z2
+ k2

T
Θ=

kBTαzyk
3

ωμ0κzz
eikz, (22)

where

kT =
1+ i

δT
, and δT =

√

2κzz
ωC
. (23)

Here δT is the depth of penetration of the thermal field in
the conductor.
The solution of eq. (22), satisfying the boundary condi-

tions (eq. (13)) is given by

Θ(z) =−
kBTαzyk

ωμ0κzz

1
(

1−
Cρyy
µ0κzz

) (eikz − beikTz), (24)

where b is 1 for an isothermal boundary condition, and
δT/δs for an adiabatic boundary condition.
After the appropriate substitution for the temperature

distribution Θ(z) and the boundary conditions (eq. (14))
in eq. (11), calculations yield the following expression
for the amplitude of the acoustic wave excited by the
temperature oscillations in a Q2D conductor:

UTzl =
ikBTβαzyk

ωμ0q
Ξi,a, (25)

where

Ξi =
iq
√

2ωμ0ρyy

(1+ i)
(

1+
√

Cρyy
µ0κzz

)A, (26)

for an isothermal boundary condition, and

Ξa =

√

µ0ρyyκzz
C

(

1+
√

Cρyy
µ0κzz

)

{

1+ iω

√

Cρyy
μ0κzz

A

}

(27)

for an adiabatic boundary condition. Here the notation is

A=
q
[

q− 1
δs
− 1
δT

]

+iω
√

µ0
ρyy

[√

C
κzz
− q√

2ω

(

1+
√

Cρyy
µ0κzz

)]

(q2ρyy − iωμ0)(q2κzz − iωC)
.

(28)
In the frame of the Boltzmann transport theory the

thermoelectric power is determined by the electrical
conductivity as follows:

αzy =
π2kBT

3e

dσzy(ε)

dε
|ε=µ, (29)

where μ is the chemical potential of the electron system.

For the model dispersion relation (eq. (19)), the electron
velocity along the normal to the layers takes the form

vz = ηvF
{

sin ξ cos(ζ tan θ)− cos ξ sin(ζ tan θ)
}

, (30)

where

ξ =
apB
� cos θ

and ζ =
2aμ

�vF
. (31)

We use identities to substitute the Bessel generating
functions [27] and to obtain

see eq. (32) above

Substituting eq. (32) in eq. (18), we note the terms
that survive when i= n, and since integrals such

as
∫ 2π

0
dφ cos(2iφ)cos(2nφ) = πδin, where δin, is the

Kronecker delta, one obtains

σzy =
1

2
η2σ0

(Ωτ cos θ)2

1+ (Ωτ cos θ)2
J0(ζ tan θ)J1(ζ tan θ). (33)

Performing the derivate over μ yields the final expression
for the thermoelectric power αzy of the form

αzy = η
2σ0
π2kBT

3eμ

(Ωτ cos θ)2 tan θ

1+ (Ωτ cos θ)2

{

−J21 (ζ tan θ)

+
1

2
(J0(ζ tan θ)−J2(ζ tan θ))J0(ζ tan θ)

}

. (34)

An electron system with elastic scattering generally obeys
the Wiedemann-Franz law [26]

κzz =
π2k2BT

3e2
σzz. (35)

The σzz component of the electrical conductivity can be
derived by following the procedure described above when
calculating σzy. After the appropriate substitution, the
Wiedemann-Franz formula takes the form

κzz =
π2k2BT

3e2
η2σ0

{

J20 (ζ tan θ)+ 2

∞
∑

i=0

J2i (ζ tan θ)

1+ (iΩτ cos θ)2

}

.

(36)

Discussion. – The amplitudes of the excited acoustic
waves by both the inductive and thermoelectric mech-
anisms are functions of the frequency of the incident
electromagnetic wave ω, the magnetic field B, the tangent
of the angle between the normal to the layer and the
magnetic field x= tan θ, as well as of the characteristics of
the Q2D conductor (resistivity, thermoelectric power and

37006-p4



Thermoelectric mechanism of EMAT in organic conductors

Fig. 1: The dependence of the amplitude of the acoustic wave
due to the inductive (solid curve) and thermoelectric mecha-
nism of EMAT for an isothermal (dashed curve) and adiabatic
(gray curve) thermal boundary condition on the magnetic
field B at x= 10, T = 300K and a) η= 0.1, b) η= 0.01.

thermal conductivity). We shall analyze the dependence
of the amplitudes UIzl and U

T

zl on the magnitude of the
magnetic field and its orientation with respect to the
layers. The effectiveness of the excitation of the acoustic
wave associated with the inductive mechanism is the
highest when q≪ |k| until the condition for normal skin
effect kl≪ 1 is fulfilled. The acoustic wave is controlled
by electrons whose velocities coincide with the Fermy
velocity, vy = vF , i.e., by electrons in the plane of the
layer. These are the electrons which are in phase with
the acoustic wave as their velocities are normal to the
acoustic wave vector vq= 0. At B = smxeτ

√

µ0σ0
ω the

interaction of the conduction electrons with the acoustic
wave is most effective and the amplitude UIzl reaches
its maximum value. On the other hand, the acoustic
wave excited by the thermoelectric effect is controlled
by electrons near the extremum vz of the Fermi surface,
reached at pz = π�/2a. In Q2D conductors, in which the
Fermi surface is a weakly corrugated cylinder open in
the direction of the propagation of the acoustic wave,
these are the electrons whose velocity component in the
direction of propagation of the wave reaches the highest
value, vmaxz = ηvF . The interaction of these electrons
with the acoustic wave is most effective when q≪| kT |
until the condition kTl≪ 1 is satisfied and for not very
strong corrugation of the Fermi surface as in that case
the maximum velocity of the electrons moving along the
wave vector vmaxz = ηvF is larger. The amplitude U

T

zl

reaches its maximum at B = mxeτ

√

2α2ωτ sin2(x−π/4)−πx
πx+2α2ωτ cos2(x−π/4) ,

where α= ηvF /s. For larger magnetic fields the acoustic
wave is strongly attenuated, and the inductive mechanism
dominates over the thermoelectric one as shown in fig. 1.

Fig. 2: The dependence of the amplitude of the acoustic
wave due to the inductive (solid curve) and thermoelectric
mechanism of EMAT for an isothermal (dashed curve) and
adiabatic (gray curve) thermal boundary condition on x= tan θ
at η= 0.01, B = 0.1T, and a) T = 300K, b) T = 100K.

The angular oscillations of the amplitude of the acoustic
wave due to the thermoelectric effect result from the
periodic dependence of the electron velocity vz on the
angle θ between the normal to the layers and the magnetic
field and take place over the entire range of angles
(fig. 2). These oscillations are characteristic for the layered
conductors and do not take place in ordinary metals.
When the angle θ is noticeably tilted from the normal
to the layers but differs from π/2, all of the sections of the
Fermi surface by the plane pB = const are closed and at
η≪ 1 they are almost indistinguishable. Because kTl≪ 1
electrons can perform several complete revolutions during
the mean free time τ before being scattered, indicating
that in the process of the EMAT of the energy in layered
conductors a large number of charge carriers is included
(due to the weak dependence of ε(p) on pz), rather than a
small group of electrons as in the case of ordinary metals.
This gives rise to the amplitude of acoustic oscillations
which makes the thermoelectric mechanism dominant over
the inductive one in a wide range of angles at room
temperature (fig. 2a). At lower temperatures the free-
path length of electrons is increasing and the domination
is present only at a larger tilt of the magnetic field
(fig. 2b) but is still present because in layered conductors
at ultrasonic frequencies the condition ωτ ≪ 1 is well
satisfied. Figure 2 shows that the height of the maxima
of UTzl at the adiabatic thermal condition at the boundary
exceeds by far that of the maxima at the isothermal one,
due to the nonzero temperature distribution at z = 0 in

the first case Θ |z=0=−
kBTαzyk
ωµ0κzz

1−
√

µ0κzz
Cρyy

1−
Cρyy
µ0κzz

.

The amplitude of oscillations of UTzl is associated with
the periodic dependence of the thermoelectric power αzy
and the thermal conductivity κzz which are functions of
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Fig. 3: The positions of the extremes of 1/κzz (gray curve),
αzy (solid curve) and U

T

zl (dashed curve) in their angular
dependences.

the velocity of the conduction electrons across the layers
vz. This is plotted in fig. 3. The acoustic wave is maximally
attenuated when UTzl goes to zero which occurs at angles
θ= θc =mπ,m= 0, 1, 2, 3 . . . , at which αzy is zero. On the
other hand, the position of the peaks in the angular depen-
dence of UTzl coincides with the position of the extremes of

inverse thermal conductivity 1
κzz
= 3e2

π2k2
B
T
ρzz. If Ωτcos θ>1,

then the first term in eq. (36) is dominant. However, if
ζtan θ equals a zero of the zeroth-order Bessel function,
then at that angle κzz will be a minimum and 1/κzz will be
a maximum. If ζtan θ≫ 1, then the zeroes occurs at angles
θ= θmaxn given by ζ tan θmaxn = π(n− 14 ), n= 0, 1, 2, 3 . . . .
For 1/κzz to be a minimum it should be θ= θ

min
n , where

ζ tan θmaxn =π(n+ 14 ). Maxima and minima appearing in
the angular dependence of 1/κzz repeat with a period
∆(tan θ) = 2π�

aDp
, and the period of oscillations of UTzl is

∆(tan θ) = π�
aDp
, respectively. The diameter of the Fermi

surface Dp along the py-axis can be determined to a
high degree of accuracy from the measured period of the
oscillations. The maxima of αzy are shifted with respect
to the maxima of 1/κzz (and thus of the maxima of U

T

zl)
by the value 2η1/2. The experimental measurement of this
value will allow the quasi–two-dimensionality parameter
of the electron energy spectrum η to be determined.
Layered organic conductors are very convenient for

performing experiments due to their high purity. The
observation of the thermoelectric mechanism of EMAT in
Q2D conductors at ultrasonic frequencies (ω∼= 108 s−1) is
conditioned by the compliance with certain requirements.
In particular, perfect specimens with a free-path length
l of electrons of 10−3 cm (for the conditions l≪ δs, δT
to be fulfilled), a relaxation time τ of 10−9 s, (so that
ωτ ≪ 1) and magnetic fields up to 0.6T must be used. At
high frequencies and low enough temperatures δs and δT
become much smaller than l. In that case the conditions for
the normal-skin effect are violated and the thermoelectric
mechanism of EMAT is totally suppressed by both the
inductive and deformation mechanisms. Wave processes
in layered organic conductors in a magnetic field are quite
sensitive to the form of the electron energy spectrum, and
their experimental study will provide detailed and reliable
information on the relaxation properties of charge carriers.
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